forked from mingxingtan/efficientnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_ckpt_main.py
221 lines (186 loc) · 8.32 KB
/
eval_ckpt_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Eval checkpoint driver.
This is an example evaluation script for users to understand the EfficientNet
model checkpoints on CPU. To serve EfficientNet, please consider to export a
`SavedModel` from checkpoints and use tf-serving to serve.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import sys
from absl import app
from absl import flags
import numpy as np
import tensorflow as tf
import efficientnet_builder
import preprocessing
flags.DEFINE_string('model_name', 'efficientnet-b0', 'Model name to eval.')
flags.DEFINE_string('runmode', 'examples', 'Running mode: examples or imagenet')
flags.DEFINE_string('imagenet_eval_glob', None,
'Imagenet eval image glob, '
'such as /imagenet/ILSVRC2012*.JPEG')
flags.DEFINE_string('imagenet_eval_label', None,
'Imagenet eval label file path, '
'such as /imagenet/ILSVRC2012_validation_ground_truth.txt')
flags.DEFINE_string('ckpt_dir', '/tmp/ckpt/', 'Checkpoint folders')
flags.DEFINE_string('example_img', '/tmp/panda.jpg',
'Filepath for a single example image.')
flags.DEFINE_string('labels_map_file', '/tmp/labels_map.txt',
'Labels map from label id to its meaning.')
flags.DEFINE_integer('num_images', 5000,
'Number of images to eval. Use -1 to eval all images.')
FLAGS = flags.FLAGS
MEAN_RGB = [0.485 * 255, 0.456 * 255, 0.406 * 255]
STDDEV_RGB = [0.229 * 255, 0.224 * 255, 0.225 * 255]
class EvalCkptDriver(object):
"""A driver for running eval inference.
Attributes:
model_name: str. Model name to eval.
batch_size: int. Eval batch size.
num_classes: int. Number of classes, default to 1000 for ImageNet.
image_size: int. Input image size, determined by model name.
"""
def __init__(self, model_name='efficientnet-b0', batch_size=1):
"""Initialize internal variables."""
self.model_name = model_name
self.batch_size = batch_size
self.num_classes = 1000
# Model Scaling parameters
_, _, self.image_size, _ = efficientnet_builder.efficientnet_params(
model_name)
def restore_model(self, sess, ckpt_dir):
"""Restore variables from checkpoint dir."""
checkpoint = tf.train.latest_checkpoint(ckpt_dir)
ema = tf.train.ExponentialMovingAverage(decay=0.9999)
ema_vars = tf.trainable_variables() + tf.get_collection('moving_vars')
for v in tf.global_variables():
if 'moving_mean' in v.name or 'moving_variance' in v.name:
ema_vars.append(v)
ema_vars = list(set(ema_vars))
var_dict = ema.variables_to_restore(ema_vars)
saver = tf.train.Saver(var_dict, max_to_keep=1)
saver.restore(sess, checkpoint)
def build_model(self, features, is_training):
"""Build model with input features."""
features -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=features.dtype)
features /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=features.dtype)
logits, _ = efficientnet_builder.build_model(
features, self.model_name, is_training)
probs = tf.nn.softmax(logits)
probs = tf.squeeze(probs)
return probs
def build_dataset(self, filenames, labels, is_training):
"""Build input dataset."""
filenames = tf.constant(filenames)
labels = tf.constant(labels)
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
def _parse_function(filename, label):
image_string = tf.read_file(filename)
image_decoded = preprocessing.preprocess_image(
image_string, is_training, self.image_size)
image = tf.cast(image_decoded, tf.float32)
return image, label
dataset = dataset.map(_parse_function)
dataset = dataset.batch(self.batch_size)
iterator = dataset.make_one_shot_iterator()
images, labels = iterator.get_next()
return images, labels
def run_inference(self, ckpt_dir, image_files, labels):
"""Build and run inference on the target images and labels."""
with tf.Graph().as_default(), tf.Session() as sess:
images, labels = self.build_dataset(image_files, labels, False)
probs = self.build_model(images, is_training=False)
sess.run(tf.global_variables_initializer())
self.restore_model(sess, ckpt_dir)
prediction_idx = []
prediction_prob = []
for _ in range(len(image_files) // self.batch_size):
out_probs = sess.run(probs)
idx = np.argsort(out_probs)[::-1]
prediction_idx.append(idx[:5])
prediction_prob.append([out_probs[pid] for pid in idx[:5]])
# Return the top 5 predictions (idx and prob) for each image.
return prediction_idx, prediction_prob
def eval_example_images(model_name, ckpt_dir, image_files, labels_map_file):
"""Eval a list of example images.
Args:
model_name: str. The name of model to eval.
ckpt_dir: str. Checkpoint directory path.
image_files: List[str]. A list of image file paths.
labels_map_file: str. The labels map file path.
Returns:
A tuple (pred_idx, and pred_prob), where pred_idx is the top 5 prediction
index and pred_prob is the top 5 prediction probability.
"""
eval_ckpt_driver = EvalCkptDriver(model_name)
classes = json.loads(tf.gfile.Open(labels_map_file).read())
pred_idx, pred_prob = eval_ckpt_driver.run_inference(
ckpt_dir, image_files, [0] * len(image_files))
for i in range(len(image_files)):
print('predicted class for image {}: '.format(image_files[i]))
for j, idx in enumerate(pred_idx[i]):
print(' -> top_{} ({:4.2f}%): {} '.format(
j, pred_prob[i][j] * 100, classes[str(idx)]))
return pred_idx, pred_prob
def eval_imagenet(model_name,
ckpt_dir,
imagenet_eval_glob,
imagenet_eval_label,
num_images):
"""Eval ImageNet images and report top1/top5 accuracy.
Args:
model_name: str. The name of model to eval.
ckpt_dir: str. Checkpoint directory path.
imagenet_eval_glob: str. File path glob for all eval images.
imagenet_eval_label: str. File path for eval label.
num_images: int. Number of images to eval: -1 means eval the whole dataset.
Returns:
A tuple (top1, top5) for top1 and top5 accuracy.
"""
eval_ckpt_driver = EvalCkptDriver(model_name)
imagenet_val_labels = [int(i) for i in tf.gfile.GFile(imagenet_eval_label)]
imagenet_filenames = sorted(tf.gfile.Glob(imagenet_eval_glob))
if num_images < 0:
num_images = len(imagenet_filenames)
image_files = imagenet_filenames[:num_images]
labels = imagenet_val_labels[:num_images]
pred_idx, _ = eval_ckpt_driver.run_inference(ckpt_dir, image_files, labels)
top1_cnt, top5_cnt = 0.0, 0.0
for i, label in enumerate(labels):
top1_cnt += label in pred_idx[i][:1]
top5_cnt += label in pred_idx[i][:5]
if i % 100 == 0:
print('Step {}: top1_acc = {:4.2f}% top5_acc = {:4.2f}%'.format(
i, 100 * top1_cnt / (i + 1), 100 * top5_cnt / (i + 1)))
sys.stdout.flush()
top1, top5 = 100 * top1_cnt / num_images, 100 * top5_cnt / num_images
print('Final: top1_acc = {:4.2f}% top5_acc = {:4.2f}%'.format(top1, top5))
return top1, top5
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.ERROR)
if FLAGS.runmode == 'examples':
# Run inference for an example image.
eval_example_images(FLAGS.model_name, FLAGS.ckpt_dir, [FLAGS.example_img],
FLAGS.labels_map_file)
elif FLAGS.runmode == 'imagenet':
# Run inference for imagenet.
eval_imagenet(FLAGS.model_name, FLAGS.ckpt_dir, FLAGS.imagenet_eval_glob,
FLAGS.imagenet_eval_label, FLAGS.num_images)
else:
print('must specify runmode: examples or imagenet')
if __name__ == '__main__':
app.run(main)