-
Notifications
You must be signed in to change notification settings - Fork 137
/
dmtxreedsol.c
500 lines (434 loc) · 17.6 KB
/
dmtxreedsol.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/**
* libdmtx - Data Matrix Encoding/Decoding Library
* Copyright 2011 Mike Laughton. All rights reserved.
* Copyright 2012-2016 Vadim A. Misbakh-Soloviov. All rights reserved.
*
* See LICENSE file in the main project directory for full
* terms of use and distribution.
*
* ---------------------------------------------------------
* Portions of this file were derived from the Reed-Solomon
* encoder/decoder released by Simon Rockliff in June 1991.
* ---------------------------------------------------------
*
* Contact:
* Vadim A. Misbakh-Soloviov <[email protected]>
* Mike Laughton <[email protected]>
*
* \file dmtxreedsol.c
*/
/**
* TODO:
* o try doxygen using using the JavaDoc style and JAVADOC_AUTOBRIEF = YES
* o switch doxygen to simplified syntax, and using "\file" instead of "@file"
*/
#define NN 255
#define MAX_ERROR_WORD_COUNT 68
/* GF add (a + b) */
#define GfAdd(a,b) \
((a) ^ (b))
/* GF multiply (a * b) */
#define GfMult(a,b) \
(((a) == 0 || (b) == 0) ? 0 : antilog301[(log301[(a)] + log301[(b)]) % NN])
/* GF multiply by antilog (a * alpha**b) */
#define GfMultAntilog(a,b) \
(((a) == 0) ? 0 : antilog301[(log301[(a)] + (b)) % NN])
/* GF(256) log values using primitive polynomial 301 */
static DmtxByte log301[] =
{ 255, 0, 1, 240, 2, 225, 241, 53, 3, 38, 226, 133, 242, 43, 54, 210,
4, 195, 39, 114, 227, 106, 134, 28, 243, 140, 44, 23, 55, 118, 211, 234,
5, 219, 196, 96, 40, 222, 115, 103, 228, 78, 107, 125, 135, 8, 29, 162,
244, 186, 141, 180, 45, 99, 24, 49, 56, 13, 119, 153, 212, 199, 235, 91,
6, 76, 220, 217, 197, 11, 97, 184, 41, 36, 223, 253, 116, 138, 104, 193,
229, 86, 79, 171, 108, 165, 126, 145, 136, 34, 9, 74, 30, 32, 163, 84,
245, 173, 187, 204, 142, 81, 181, 190, 46, 88, 100, 159, 25, 231, 50, 207,
57, 147, 14, 67, 120, 128, 154, 248, 213, 167, 200, 63, 236, 110, 92, 176,
7, 161, 77, 124, 221, 102, 218, 95, 198, 90, 12, 152, 98, 48, 185, 179,
42, 209, 37, 132, 224, 52, 254, 239, 117, 233, 139, 22, 105, 27, 194, 113,
230, 206, 87, 158, 80, 189, 172, 203, 109, 175, 166, 62, 127, 247, 146, 66,
137, 192, 35, 252, 10, 183, 75, 216, 31, 83, 33, 73, 164, 144, 85, 170,
246, 65, 174, 61, 188, 202, 205, 157, 143, 169, 82, 72, 182, 215, 191, 251,
47, 178, 89, 151, 101, 94, 160, 123, 26, 112, 232, 21, 51, 238, 208, 131,
58, 69, 148, 18, 15, 16, 68, 17, 121, 149, 129, 19, 155, 59, 249, 70,
214, 250, 168, 71, 201, 156, 64, 60, 237, 130, 111, 20, 93, 122, 177, 150 };
/* GF(256) antilog values using primitive polynomial 301 */
static DmtxByte antilog301[] =
{ 1, 2, 4, 8, 16, 32, 64, 128, 45, 90, 180, 69, 138, 57, 114, 228,
229, 231, 227, 235, 251, 219, 155, 27, 54, 108, 216, 157, 23, 46, 92, 184,
93, 186, 89, 178, 73, 146, 9, 18, 36, 72, 144, 13, 26, 52, 104, 208,
141, 55, 110, 220, 149, 7, 14, 28, 56, 112, 224, 237, 247, 195, 171, 123,
246, 193, 175, 115, 230, 225, 239, 243, 203, 187, 91, 182, 65, 130, 41, 82,
164, 101, 202, 185, 95, 190, 81, 162, 105, 210, 137, 63, 126, 252, 213, 135,
35, 70, 140, 53, 106, 212, 133, 39, 78, 156, 21, 42, 84, 168, 125, 250,
217, 159, 19, 38, 76, 152, 29, 58, 116, 232, 253, 215, 131, 43, 86, 172,
117, 234, 249, 223, 147, 11, 22, 44, 88, 176, 77, 154, 25, 50, 100, 200,
189, 87, 174, 113, 226, 233, 255, 211, 139, 59, 118, 236, 245, 199, 163, 107,
214, 129, 47, 94, 188, 85, 170, 121, 242, 201, 191, 83, 166, 97, 194, 169,
127, 254, 209, 143, 51, 102, 204, 181, 71, 142, 49, 98, 196, 165, 103, 206,
177, 79, 158, 17, 34, 68, 136, 61, 122, 244, 197, 167, 99, 198, 161, 111,
222, 145, 15, 30, 60, 120, 240, 205, 183, 67, 134, 33, 66, 132, 37, 74,
148, 5, 10, 20, 40, 80, 160, 109, 218, 153, 31, 62, 124, 248, 221, 151,
3, 6, 12, 24, 48, 96, 192, 173, 119, 238, 241, 207, 179, 75, 150, 0 };
/**
* Encode xyz.
* More detailed description.
* \param message
* \param sizeIdx
* \return Function success (DmtxPass|DmtxFail)
*/
#undef CHKPASS
#define CHKPASS { if(passFail == DmtxFail) return DmtxFail; }
static DmtxPassFail
RsEncode(DmtxMessage *message, int sizeIdx)
{
int i, j;
int blockStride, blockIdx;
int blockErrorWords, symbolDataWords, symbolErrorWords, symbolTotalWords;
DmtxPassFail passFail;
DmtxByte val, *eccPtr;
DmtxByte genStorage[MAX_ERROR_WORD_COUNT];
DmtxByte eccStorage[MAX_ERROR_WORD_COUNT];
DmtxByteList gen = dmtxByteListBuild(genStorage, sizeof(genStorage));
DmtxByteList ecc = dmtxByteListBuild(eccStorage, sizeof(eccStorage));
blockStride = dmtxGetSymbolAttribute(DmtxSymAttribInterleavedBlocks, sizeIdx);
blockErrorWords = dmtxGetSymbolAttribute(DmtxSymAttribBlockErrorWords, sizeIdx);
symbolDataWords = dmtxGetSymbolAttribute(DmtxSymAttribSymbolDataWords, sizeIdx);
symbolErrorWords = dmtxGetSymbolAttribute(DmtxSymAttribSymbolErrorWords, sizeIdx);
symbolTotalWords = symbolDataWords + symbolErrorWords;
/* Populate generator polynomial */
RsGenPoly(&gen, blockErrorWords);
/* For each interleaved block... */
for(blockIdx = 0; blockIdx < blockStride; blockIdx++)
{
/* Generate error codewords */
dmtxByteListInit(&ecc, blockErrorWords, 0, &passFail); CHKPASS;
for(i = blockIdx; i < symbolDataWords; i += blockStride)
{
val = GfAdd(ecc.b[blockErrorWords-1], message->code[i]);
for(j = blockErrorWords - 1; j > 0; j--)
{
DMTX_CHECK_BOUNDS(&ecc, j); DMTX_CHECK_BOUNDS(&ecc, j-1); DMTX_CHECK_BOUNDS(&gen, j);
ecc.b[j] = GfAdd(ecc.b[j-1], GfMult(gen.b[j], val));
}
ecc.b[0] = GfMult(gen.b[0], val);
}
/* Copy to output message */
eccPtr = ecc.b + blockErrorWords;
for(i = symbolDataWords + blockIdx; i < symbolTotalWords; i += blockStride)
message->code[i] = *(--eccPtr);
assert(ecc.b == eccPtr);
}
return DmtxPass;
}
/**
* Decode xyz.
* More detailed description.
* \param code
* \param sizeIdx
* \param fix
* \return Function success (DmtxPass|DmtxFail)
*/
#undef CHKPASS
#define CHKPASS { if(passFail == DmtxFail) return DmtxFail; }
static DmtxPassFail
RsDecode(unsigned char *code, int sizeIdx, int fix)
{
int i;
int blockStride, blockIdx;
int blockDataWords, blockErrorWords, blockMaxCorrectable;
// int blockDataWords, blockErrorWords, blockTotalWords, blockMaxCorrectable;
int symbolDataWords, symbolErrorWords, symbolTotalWords;
DmtxBoolean error, repairable;
DmtxPassFail passFail;
unsigned char *word;
DmtxByte elpStorage[MAX_ERROR_WORD_COUNT];
DmtxByte synStorage[MAX_ERROR_WORD_COUNT+1];
DmtxByte recStorage[NN];
DmtxByte locStorage[NN];
DmtxByteList elp = dmtxByteListBuild(elpStorage, sizeof(elpStorage));
DmtxByteList syn = dmtxByteListBuild(synStorage, sizeof(synStorage));
DmtxByteList rec = dmtxByteListBuild(recStorage, sizeof(recStorage));
DmtxByteList loc = dmtxByteListBuild(locStorage, sizeof(locStorage));
blockStride = dmtxGetSymbolAttribute(DmtxSymAttribInterleavedBlocks, sizeIdx);
blockErrorWords = dmtxGetSymbolAttribute(DmtxSymAttribBlockErrorWords, sizeIdx);
blockMaxCorrectable = dmtxGetSymbolAttribute(DmtxSymAttribBlockMaxCorrectable, sizeIdx);
symbolDataWords = dmtxGetSymbolAttribute(DmtxSymAttribSymbolDataWords, sizeIdx);
symbolErrorWords = dmtxGetSymbolAttribute(DmtxSymAttribSymbolErrorWords, sizeIdx);
symbolTotalWords = symbolDataWords + symbolErrorWords;
/* For each interleaved block */
for(blockIdx = 0; blockIdx < blockStride; blockIdx++)
{
/* Data word count depends on blockIdx due to special case at 144x144 */
blockDataWords = dmtxGetBlockDataSize(sizeIdx, blockIdx);
// blockTotalWords = blockErrorWords + blockDataWords;
/* Populate received list (rec) with data and error codewords */
dmtxByteListInit(&rec, 0, 0, &passFail); CHKPASS;
/* Start with final error word and work backward */
word = code + symbolTotalWords + blockIdx - blockStride;
for(i = 0; i < blockErrorWords; i++)
{
dmtxByteListPush(&rec, *word, &passFail); CHKPASS;
word -= blockStride;
}
/* Start with final data word and work backward */
word = code + blockIdx + (blockStride * (blockDataWords - 1));
for(i = 0; i < blockDataWords; i++)
{
dmtxByteListPush(&rec, *word, &passFail); CHKPASS;
word -= blockStride;
}
/* Compute syndromes (syn) */
error = RsComputeSyndromes(&syn, &rec, blockErrorWords);
/* Error(s) detected: Attempt repair */
if(error)
{
/* Find error locator polynomial (elp) */
repairable = RsFindErrorLocatorPoly(&elp, &syn, blockErrorWords, blockMaxCorrectable);
if(!repairable)
return DmtxFail;
/* Find error positions (loc) */
repairable = RsFindErrorLocations(&loc, &elp);
if(!repairable)
return DmtxFail;
/* Find error values and repair */
RsRepairErrors(&rec, &loc, &elp, &syn);
}
/*
* Overwrite output with correct/corrected values
*/
/* Start with first data word and work forward */
word = code + blockIdx;
for(i = 0; i < blockDataWords; i++)
{
*word = dmtxByteListPop(&rec, &passFail); CHKPASS;
word += blockStride;
}
/* Start with first error word and work forward */
word = code + symbolDataWords + blockIdx;
for(i = 0; i < blockErrorWords; i++)
{
*word = dmtxByteListPop(&rec, &passFail); CHKPASS;
word += blockStride;
}
}
return DmtxPass;
}
/**
* Populate generator polynomial.
* More detailed description.
* \param gen
* \param errorWordCount
* \return Function success (DmtxPass|DmtxFail)
*/
#undef CHKPASS
#define CHKPASS { if(passFail == DmtxFail) return DmtxFail; }
static DmtxPassFail
RsGenPoly(DmtxByteList *gen, int errorWordCount)
{
int i, j;
DmtxPassFail passFail;
/* Initialize all coefficients to 1 */
dmtxByteListInit(gen, errorWordCount, 1, &passFail); CHKPASS;
/* Generate polynomial */
for(i = 0; i < gen->length; i++)
{
for(j = i; j >= 0; j--)
{
gen->b[j] = GfMultAntilog(gen->b[j], i+1);
if(j > 0)
gen->b[j] = GfAdd(gen->b[j], gen->b[j-1]);
}
}
return DmtxPass;
}
/**
* Populate generator polynomial.
* Assume we have received bits grouped into mm-bit symbols in rec[i],
* i=0..(nn-1), and rec[i] is index form (ie as powers of alpha). We first
* compute the 2*tt syndromes by substituting alpha**i into rec(X) and
* evaluating, storing the syndromes in syn[i], i=1..2tt (leave syn[0] zero).
* \param syn
* \param rec
* \param blockErrorWords
* \return Are error(s) present? (DmtxPass|DmtxFail)
*/
/* XXX this CHKPASS isn't doing what we want ... really need a error reporting strategy */
#undef CHKPASS
#define CHKPASS { if(passFail == DmtxFail) return DmtxTrue; }
static DmtxBoolean
RsComputeSyndromes(DmtxByteList *syn, const DmtxByteList *rec, int blockErrorWords)
{
int i, j;
DmtxPassFail passFail;
DmtxBoolean error = DmtxFalse;
/* Initialize all coefficients to 0 */
dmtxByteListInit(syn, blockErrorWords + 1, 0, &passFail); CHKPASS;
for(i = 1; i < syn->length; i++)
{
/* Calculate syndrome at i */
for(j = 0; j < rec->length; j++) /* alternatively: j < blockTotalWords */
syn->b[i] = GfAdd(syn->b[i], GfMultAntilog(rec->b[j], i*j));
/* Non-zero syndrome indicates presence of error(s) */
if(syn->b[i] != 0)
error = DmtxTrue;
}
return error;
}
/**
* Find the error location polynomial using Berlekamp-Massey.
* More detailed description.
* \param elpOut
* \param syn
* \param errorWordCount
* \param maxCorrectable
* \return Is block repairable? (DmtxTrue|DmtxFalse)
*/
/* XXX this CHKPASS isn't doing what we want ... really need a error reporting strategy */
#undef CHKPASS
#define CHKPASS { if(passFail == DmtxFail) return DmtxFalse; }
static DmtxBoolean
RsFindErrorLocatorPoly(DmtxByteList *elpOut, const DmtxByteList *syn, int errorWordCount, int maxCorrectable)
{
int i, iNext, j;
int m, mCmp, lambda;
DmtxByte disTmp, disStorage[MAX_ERROR_WORD_COUNT+1];
DmtxByte elpStorage[MAX_ERROR_WORD_COUNT+2][MAX_ERROR_WORD_COUNT];
DmtxByteList dis, elp[MAX_ERROR_WORD_COUNT+2];
DmtxPassFail passFail;
dis = dmtxByteListBuild(disStorage, sizeof(disStorage));
dmtxByteListInit(&dis, 0, 0, &passFail); CHKPASS;
for(i = 0; i < MAX_ERROR_WORD_COUNT + 2; i++)
{
elp[i] = dmtxByteListBuild(elpStorage[i], sizeof(elpStorage[i]));
dmtxByteListInit(&elp[i], 0, 0, &passFail); CHKPASS;
}
/* iNext = 0 */
dmtxByteListPush(&elp[0], 1, &passFail); CHKPASS;
dmtxByteListPush(&dis, 1, &passFail); CHKPASS;
/* iNext = 1 */
dmtxByteListPush(&elp[1], 1, &passFail); CHKPASS;
dmtxByteListPush(&dis, syn->b[1], &passFail); CHKPASS;
for(iNext = 2, i = 1; /* explicit break */; i = iNext++)
{
if(dis.b[i] == 0)
{
/* Simple case: Copy directly from previous iteration */
dmtxByteListCopy(&elp[iNext], &elp[i], &passFail); CHKPASS;
}
else
{
/* Find earlier iteration (m) that provides maximal (m - lambda) */
for(m = 0, mCmp = 1; mCmp < i; mCmp++)
if(dis.b[mCmp] != 0 && (mCmp - elp[mCmp].length) >= (m - elp[m].length))
m = mCmp;
/* Calculate error location polynomial elp[i] (set 1st term) */
for(lambda = elp[m].length - 1, j = 0; j <= lambda; j++)
elp[iNext].b[j+i-m] = (elp[i - 1].b[j] == 0) ? 0 :
antilog301[(NN - log301[dis.b[m]] +
log301[dis.b[i]] + log301[elp[m].b[j]]) % NN];
/* Calculate error location polynomial elp[i] (add 2nd term) */
for(lambda = elp[i].length - 1, j = 0; j <= lambda; j++)
elp[iNext].b[j] = GfAdd(elp[iNext].b[j], elp[i].b[j]);
elp[iNext].length = max(elp[i].length, elp[m].length + i - m);
}
lambda = elp[iNext].length - 1;
if(i == errorWordCount || i >= lambda + maxCorrectable)
break;
/* Calculate discrepancy dis.b[i] */
for(disTmp = syn->b[iNext], j = 1; j <= lambda; j++)
disTmp = GfAdd(disTmp, GfMult(syn->b[iNext-j], elp[iNext].b[j]));
assert(dis.length == iNext);
dmtxByteListPush(&dis, disTmp, &passFail); CHKPASS;
}
dmtxByteListCopy(elpOut, &elp[iNext], &passFail); CHKPASS;
return (lambda <= maxCorrectable) ? DmtxTrue : DmtxFalse;
}
/**
* Find roots of the error locator polynomial (Chien Search).
* If the degree of elp is <= tt, we substitute alpha**i, i=1..n into the elp
* to get the roots, hence the inverse roots, the error location numbers.
* If the number of errors located does not equal the degree of the elp, we
* have more than tt errors and cannot correct them.
* \param loc
* \param elp
* \return Is block repairable? (DmtxTrue|DmtxFalse)
*/
#undef CHKPASS
#define CHKPASS { if(passFail == DmtxFail) return DmtxFalse; }
static DmtxBoolean
RsFindErrorLocations(DmtxByteList *loc, const DmtxByteList *elp)
{
int i, j;
int lambda = elp->length - 1;
DmtxPassFail passFail;
DmtxByte q, regStorage[MAX_ERROR_WORD_COUNT];
DmtxByteList reg = dmtxByteListBuild(regStorage, sizeof(regStorage));
dmtxByteListCopy(®, elp, &passFail); CHKPASS;
dmtxByteListInit(loc, 0, 0, &passFail); CHKPASS;
for(i = 1; i <= NN; i++)
{
for(q = 1, j = 1; j <= lambda; j++)
{
reg.b[j] = GfMultAntilog(reg.b[j], j);
q = GfAdd(q, reg.b[j]);
}
if(q == 0)
{
dmtxByteListPush(loc, NN - i, &passFail); CHKPASS;
}
}
return (loc->length == lambda) ? DmtxTrue : DmtxFalse;
}
/**
* Find the error values and repair.
* Solve for the error value at the error location and correct the error. The
* procedure is that found in Lin and Costello.
* For the cases where the number of errors is known to be too large to
* correct, the information symbols as received are output (the advantage of
* systematic encoding is that hopefully some of the information symbols will
* be okay and that if we are in luck, the errors are in the parity part of
* the transmitted codeword).
* \param rec
* \param loc
* \param elp
* \param syn
*/
#undef CHKPASS
#define CHKPASS { if(passFail == DmtxFail) return DmtxFail; }
static DmtxPassFail
RsRepairErrors(DmtxByteList *rec, const DmtxByteList *loc, const DmtxByteList *elp, const DmtxByteList *syn)
{
int i, j, q;
int lambda = elp->length - 1;
DmtxPassFail passFail;
DmtxByte zVal, root, err;
DmtxByte zStorage[MAX_ERROR_WORD_COUNT+1];
DmtxByteList z = dmtxByteListBuild(zStorage, sizeof(zStorage));
/* Form polynomial z(x) */
dmtxByteListPush(&z, 1, &passFail); CHKPASS;
for(i = 1; i <= lambda; i++)
{
for(zVal = GfAdd(syn->b[i], elp->b[i]), j = 1; j < i; j++)
zVal= GfAdd(zVal, GfMult(elp->b[i-j], syn->b[j]));
dmtxByteListPush(&z, zVal, &passFail); CHKPASS;
}
for(i = 0; i < lambda; i++)
{
/* Calculate numerator of error term */
root = NN - loc->b[i];
for(err = 1, j = 1; j <= lambda; j++)
err = GfAdd(err, GfMultAntilog(z.b[j], j * root));
if(err == 0)
continue;
/* Calculate denominator of error term */
for(q = 0, j = 0; j < lambda; j++)
{
if(j != i)
q += log301[1 ^ antilog301[(loc->b[j] + root) % NN]];
}
q %= NN;
err = GfMultAntilog(err, NN - q);
rec->b[loc->b[i]] = GfAdd(rec->b[loc->b[i]], err);
}
return DmtxPass;
}