-
Notifications
You must be signed in to change notification settings - Fork 308
/
server.py
129 lines (101 loc) · 4.29 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from flask import Flask
from flask import request, jsonify, abort, make_response
from flask_cors import CORS
import nltk
nltk.download('punkt')
from nltk import tokenize
from typing import List
import argparse
from summarizer import Summarizer, TransformerSummarizer
app = Flask(__name__)
CORS(app)
class Parser(object):
def __init__(self, raw_text: bytes):
self.all_data = str(raw_text, 'utf-8').split('\n')
def __isint(self, v) -> bool:
try:
int(v)
return True
except:
return False
def __should_skip(self, v) -> bool:
return self.__isint(v) or v == '\n' or '-->' in v
def __process_sentences(self, v) -> List[str]:
sentence = tokenize.sent_tokenize(v)
return sentence
def save_data(self, save_path, sentences) -> None:
with open(save_path, 'w') as f:
for sentence in sentences:
f.write("%s\n" % sentence)
def run(self) -> List[str]:
total: str = ''
for data in self.all_data:
if not self.__should_skip(data):
cleaned = data.replace('>', '').replace('\n', '').strip()
if cleaned:
total += ' ' + cleaned
sentences = self.__process_sentences(total)
return sentences
def convert_to_paragraphs(self) -> str:
sentences: List[str] = self.run()
return ' '.join([sentence.strip() for sentence in sentences]).strip()
@app.route('/', methods=['GET'])
def hello_world():
return 'Hello, World!'
@app.route('/summarize_by_ratio', methods=['POST'])
def convert_raw_text_by_ratio():
ratio = float(request.args.get('ratio', 0.2))
min_length = int(request.args.get('min_length', 25))
max_length = int(request.args.get('max_length', 500))
data = request.data
if not data:
abort(make_response(jsonify(message="Request must have raw text"), 400))
parsed = Parser(data).convert_to_paragraphs()
summary = summarizer(parsed, ratio=ratio, min_length=min_length, max_length=max_length)
return jsonify({
'summary': summary
})
@app.route('/summarize_by_sentence', methods=['POST'])
def convert_raw_text_by_sent():
num_sentences = int(request.args.get('num_sentences', 5))
min_length = int(request.args.get('min_length', 25))
max_length = int(request.args.get('max_length', 500))
data = request.data
if not data:
abort(make_response(jsonify(message="Request must have raw text"), 400))
parsed = Parser(data).convert_to_paragraphs()
summary = summarizer(parsed, num_sentences=num_sentences, min_length=min_length, max_length=max_length)
return jsonify({
'summary': summary
})
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('-model', dest='model', default='bert-base-uncased', help='The model to use')
parser.add_argument('-transformer-type',
dest='transformer_type', default=None,
help='Huggingface transformer class key')
parser.add_argument('-transformer-key', dest='transformer_key', default=None,
help='The transformer key for huggingface. For example bert-base-uncased for Bert Class')
parser.add_argument('-greediness', dest='greediness', help='', default=0.45)
parser.add_argument('-reduce', dest='reduce', help='', default='mean')
parser.add_argument('-hidden', dest='hidden', help='', default=-2)
parser.add_argument('-port', dest='port', help='', default=8080)
parser.add_argument('-host', dest='host', help='', default='0.0.0.0')
args = parser.parse_args()
if args.transformer_type is not None:
print(f"Using Model: {args.transformer_type}")
assert args.transformer_key is not None, 'Transformer Key cannot be none with the transformer type'
summarizer = TransformerSummarizer(
transformer_type=args.transformer_type,
transformer_model_key=args.transformer_key,
hidden=int(args.hidden),
reduce_option=args.reduce
)
else:
print(f"Using Model: {args.model}")
summarizer = Summarizer(
model=args.model,
hidden=int(args.hidden),
reduce_option=args.reduce
)
app.run(host=args.host, port=int(args.port))