-
Notifications
You must be signed in to change notification settings - Fork 0
/
wnla.go
197 lines (165 loc) · 5.2 KB
/
wnla.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Package bulletproofs
// Copyright 2024 Distributed Lab. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bulletproofs
import (
"bytes"
"errors"
"github.com/cloudflare/bn256"
"math/big"
)
// CommitWNLA creates a commitment for vectors n, l based on public parameters p.
// Commit(l, n) = v*G + <l, H> + <n, G>
// where v = <c, l> + |n^2|_mu
func (p *WeightNormLinearPublic) CommitWNLA(l []*big.Int, n []*big.Int) *bn256.G1 {
v_ := add(vectorMul(p.C, l), weightVectorMul(n, n, p.Mu))
C := new(bn256.G1).ScalarMult(p.G, v_)
C.Add(C, vectorPointScalarMul(p.HVec, l))
C.Add(C, vectorPointScalarMul(p.GVec, n))
return C
}
// VerifyWNLA verifies the weight norm linear argument proof. If err is nil then proof is valid.
// Use empty FiatShamirEngine for call. Also, use the same commitment that has been used during proving.
func VerifyWNLA(public *WeightNormLinearPublic, proof *WeightNormLinearArgumentProof, Com *bn256.G1, fs FiatShamirEngine) error {
if len(proof.X) != len(proof.R) {
return errors.New("invalid length for R and X vectors: should be equal")
}
if len(proof.X) == 0 {
if !bytes.Equal(public.CommitWNLA(proof.L, proof.N).Marshal(), Com.Marshal()) {
return errors.New("failed to verify proof")
}
return nil
}
fs.AddPoint(Com)
fs.AddPoint(proof.X[0])
fs.AddPoint(proof.R[0])
fs.AddNumber(bint(len(public.HVec)))
fs.AddNumber(bint(len(public.GVec)))
// Challenge using Fiat-Shamir heuristic
y := fs.GetChallenge()
c0, c1 := reduceVector(public.C)
G0, G1 := reducePoints(public.GVec)
H0, H1 := reducePoints(public.HVec)
// Both calculates new vector points and new commitment
H_ := vectorPointsAdd(H0, vectorPointMulOnScalar(H1, y))
G_ := vectorPointsAdd(vectorPointMulOnScalar(G0, public.Ro), vectorPointMulOnScalar(G1, y))
c_ := vectorAdd(c0, vectorMulOnScalar(c1, y))
Com_ := new(bn256.G1).Set(Com)
Com_.Add(Com_, new(bn256.G1).ScalarMult(proof.X[0], y))
Com_.Add(Com_, new(bn256.G1).ScalarMult(proof.R[0], sub(mul(y, y), bint(1))))
// Recursive run
return VerifyWNLA(
&WeightNormLinearPublic{
G: public.G,
GVec: G_,
HVec: H_,
C: c_,
Ro: public.Mu,
Mu: mul(public.Mu, public.Mu),
},
&WeightNormLinearArgumentProof{
R: proof.R[1:],
X: proof.X[1:],
L: proof.L,
N: proof.N,
},
Com_,
fs,
)
}
// ProveWNLA generates zero knowledge proof of knowledge of two vectors l and n that
// satisfies the commitment C (see WeightNormLinearPublic.Commit() function).
// Use empty FiatShamirEngine for call.
func ProveWNLA(public *WeightNormLinearPublic, Com *bn256.G1, fs FiatShamirEngine, l, n []*big.Int) *WeightNormLinearArgumentProof {
if len(l)+len(n) < 6 {
// Prover sends l, n to Verifier
return &WeightNormLinearArgumentProof{
R: make([]*bn256.G1, 0),
X: make([]*bn256.G1, 0),
L: l,
N: n,
}
}
roinv := inv(public.Ro)
// Prover calculates new reduced values, vx and vr and sends X, R to verifier
c0, c1 := reduceVector(public.C)
l0, l1 := reduceVector(l)
n0, n1 := reduceVector(n)
G0, G1 := reducePoints(public.GVec)
H0, H1 := reducePoints(public.HVec)
mu2 := mul(public.Mu, public.Mu)
vx := add(
mul(weightVectorMul(n0, n1, mu2), mul(bint(2), roinv)),
add(vectorMul(c0, l1), vectorMul(c1, l0)),
)
vr := add(weightVectorMul(n1, n1, mu2), vectorMul(c1, l1))
X := new(bn256.G1).ScalarMult(public.G, vx)
X.Add(X, vectorPointScalarMul(H0, l1))
X.Add(X, vectorPointScalarMul(H1, l0))
X.Add(X, vectorPointScalarMul(G0, vectorMulOnScalar(n1, public.Ro)))
X.Add(X, vectorPointScalarMul(G1, vectorMulOnScalar(n0, roinv)))
R := new(bn256.G1).ScalarMult(public.G, vr)
R.Add(R, vectorPointScalarMul(H1, l1))
R.Add(R, vectorPointScalarMul(G1, n1))
fs.AddPoint(Com)
fs.AddPoint(X)
fs.AddPoint(R)
fs.AddNumber(bint(len(public.HVec)))
fs.AddNumber(bint(len(public.GVec)))
// Challenge using Fiat-Shamir heuristic
y := fs.GetChallenge()
// Both calculates new vector points and new commitment
H_ := vectorPointsAdd(H0, vectorPointMulOnScalar(H1, y))
G_ := vectorPointsAdd(vectorPointMulOnScalar(G0, public.Ro), vectorPointMulOnScalar(G1, y))
c_ := vectorAdd(c0, vectorMulOnScalar(c1, y))
// Prover calculates new reduced vectors
l_ := vectorAdd(l0, vectorMulOnScalar(l1, y))
n_ := vectorAdd(vectorMulOnScalar(n0, roinv), vectorMulOnScalar(n1, y))
public_ := &WeightNormLinearPublic{
G: public.G,
GVec: G_,
HVec: H_,
C: c_,
Ro: public.Mu,
Mu: mu2,
}
// Recursive run
res := ProveWNLA(
public_,
public_.CommitWNLA(l_, n_),
fs,
l_,
n_,
)
return &WeightNormLinearArgumentProof{
R: append([]*bn256.G1{R}, res.R...),
X: append([]*bn256.G1{X}, res.X...),
L: res.L,
N: res.N,
}
}
func reduceVector(v []*big.Int) ([]*big.Int, []*big.Int) {
res0 := make([]*big.Int, 0, len(v)/2)
res1 := make([]*big.Int, 0, len(v)/2)
for i := range v {
if i%2 == 0 {
res0 = append(res0, v[i])
} else {
res1 = append(res1, v[i])
}
}
return res0, res1
}
func reducePoints(v []*bn256.G1) ([]*bn256.G1, []*bn256.G1) {
res0 := make([]*bn256.G1, 0, len(v)/2)
res1 := make([]*bn256.G1, 0, len(v)/2)
for i := range v {
if i%2 == 0 {
res0 = append(res0, v[i])
} else {
res1 = append(res1, v[i])
}
}
return res0, res1
}