Skip to content

Latest commit

 

History

History
597 lines (446 loc) · 22.5 KB

Serializbale.md

File metadata and controls

597 lines (446 loc) · 22.5 KB
title shortTitle category tag description head
Java Serializable 接口:明明就一个空的接口嘛
序列接口Serializable
Java核心
Java IO
本文详细介绍了 Java Serializable 接口的实际作用与意义,阐述了虽然它是一个空接口,但在 Java 对象序列化中具有重要的标记作用。同时,文章还提供了 Serializable 接口的实际应用示例和序列化机制。阅读本文,将帮助您更深入地了解 Serializable 接口在 Java 编程中的关键地位,有效实现对象的序列化与反序列化。
meta
name content
keywords
Java,Java SE,Java基础,Java教程,二哥的Java进阶之路,Java进阶之路,Java入门,教程,Serializable,java Serializable,java 序列化

7.9 序列接口Serializable

对于 Java 的序列化,我之前一直停留在最浅层次的认知上——把那个要序列化的类实现 Serializbale 接口就可以了嘛。

我似乎不愿意做更深入的研究,因为会用就行了嘛。

但随着时间的推移,见到 Serializbale 的次数越来越多,我便对它产生了浓厚的兴趣。是时候花点时间研究研究了。

01、先来点理论

Java 序列化是 JDK 1.1 时引入的一组开创性的特性,用于将 Java 对象转换为字节数组,便于存储或传输。此后,仍然可以将字节数组转换回 Java 对象原有的状态。

序列化的思想是“冻结”对象状态,然后写到磁盘或者在网络中传输;反序列化的思想是“解冻”对象状态,重新获得可用的 Java 对象。

序列化有一条规则,就是要序列化的对象必须实现 Serializbale 接口,否则就会报 NotSerializableException 异常。

好,来看看 Serializbale 接口的定义吧:

public interface Serializable {
}

没别的了!

明明就一个空的接口嘛,竟然能够保证实现了它的“类对象”被序列化和反序列化?

02、再来点实战

在回答上述问题之前,我们先来创建一个类(只有两个字段,和对应的 getter/setter),用于序列化和反序列化。

class Wanger {
    private String name;
    private int age;

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }
}

再来创建一个测试类,通过 ObjectOutputStream 将“18 岁的王二”写入到文件当中,实际上就是一种序列化的过程;再通过 ObjectInputStream 将“18 岁的王二”从文件中读出来,实际上就是一种反序列化的过程。(前面我们学习序列流的时候也讲过)

// 初始化
Wanger wanger = new Wanger();
wanger.setName("王二");
wanger.setAge(18);
System.out.println(wanger);

// 把对象写到文件中
try (ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("chenmo"));){
    oos.writeObject(wanger);
} catch (IOException e) {
    e.printStackTrace();
}

// 从文件中读出对象
try (ObjectInputStream ois = new ObjectInputStream(new FileInputStream(new File("chenmo")));){
    Wanger wanger1 = (Wanger) ois.readObject();
    System.out.println(wanger1);
} catch (IOException | ClassNotFoundException e) {
    e.printStackTrace();
}

不过,由于 Wanger 没有实现 Serializbale 接口,所以在运行测试类的时候会抛出异常,堆栈信息如下:

java.io.NotSerializableException: com.cmower.java_demo.xuliehua.Wanger
	at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1184)
	at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
	at com.cmower.java_demo.xuliehua.Test.main(Test.java:21)

顺着堆栈信息,我们来看一下 ObjectOutputStreamwriteObject0() 方法。其部分源码如下:

// 判断对象是否为字符串类型,如果是,则调用 writeString 方法进行序列化
if (obj instanceof String) {
    writeString((String) obj, unshared);
}
// 判断对象是否为数组类型,如果是,则调用 writeArray 方法进行序列化
else if (cl.isArray()) {
    writeArray(obj, desc, unshared);
}
// 判断对象是否为枚举类型,如果是,则调用 writeEnum 方法进行序列化
else if (obj instanceof Enum) {
    writeEnum((Enum<?>) obj, desc, unshared);
}
// 判断对象是否为可序列化类型,如果是,则调用 writeOrdinaryObject 方法进行序列化
else if (obj instanceof Serializable) {
    writeOrdinaryObject(obj, desc, unshared);
}
// 如果对象不能被序列化,则抛出 NotSerializableException 异常
else {
if (extendedDebugInfo) {
    throw new NotSerializableException(
        cl.getName() + "\n" + debugInfoStack.toString());
} else {
    throw new NotSerializableException(cl.getName());
}
}

也就是说,ObjectOutputStream 在序列化的时候,会判断被序列化的对象是哪一种类型,字符串?数组?枚举?还是 Serializable,如果全都不是的话,抛出 NotSerializableException

假如 Wanger 实现了 Serializable 接口,就可以序列化和反序列化了。

class Wanger implements Serializable{
    private static final long serialVersionUID = -2095916884810199532L;
    
    private String name;
    private int age;
}

具体怎么序列化呢?

ObjectOutputStream 为例吧,它在序列化的时候会依次调用 writeObject()writeObject0()writeOrdinaryObject()writeSerialData()invokeWriteObject()defaultWriteFields()

private void defaultWriteFields(Object obj, ObjectStreamClass desc) throws IOException {
    // 获取对象的类,并检查是否可以进行默认的序列化
    Class<?> cl = desc.forClass();
    desc.checkDefaultSerialize();

    // 获取对象的基本类型字段的数量,以及这些字段的值
    int primDataSize = desc.getPrimDataSize();
    desc.getPrimFieldValues(obj, primVals);
    // 将基本类型字段的值写入输出流
    bout.write(primVals, 0, primDataSize, false);

    // 获取对象的非基本类型字段的值
    ObjectStreamField[] fields = desc.getFields(false);
    Object[] objVals = new Object[desc.getNumObjFields()];
    int numPrimFields = fields.length - objVals.length;
    desc.getObjFieldValues(obj, objVals);
    // 循环写入对象的非基本类型字段的值
    for (int i = 0; i < objVals.length; i++) {
        // 调用 writeObject0 方法将对象的非基本类型字段序列化写入输出流
        try {
            writeObject0(objVals[i], fields[numPrimFields + i].isUnshared());
        }
        // 如果在写入过程中出现异常,则将异常包装成 IOException 抛出
        catch (IOException ex) {
            if (abortIOException == null) {
                abortIOException = ex;
            }
        }
    }
}

那怎么反序列化呢?

ObjectInputStream 为例,它在反序列化的时候会依次调用 readObject()readObject0()readOrdinaryObject()readSerialData()defaultReadFields()

private void defaultReadFields(Object obj, ObjectStreamClass desc) throws IOException {
    // 获取对象的类,并检查对象是否属于该类
    Class<?> cl = desc.forClass();
    if (cl != null && obj != null && !cl.isInstance(obj)) {
        throw new ClassCastException();
    }

    // 获取对象的基本类型字段的数量和值
    int primDataSize = desc.getPrimDataSize();
    if (primVals == null || primVals.length < primDataSize) {
        primVals = new byte[primDataSize];
    }
    // 从输入流中读取基本类型字段的值,并存储在 primVals 数组中
    bin.readFully(primVals, 0, primDataSize, false);
    if (obj != null) {
        // 将 primVals 数组中的基本类型字段的值设置到对象的相应字段中
        desc.setPrimFieldValues(obj, primVals);
    }

    // 获取对象的非基本类型字段的数量和值
    int objHandle = passHandle;
    ObjectStreamField[] fields = desc.getFields(false);
    Object[] objVals = new Object[desc.getNumObjFields()];
    int numPrimFields = fields.length - objVals.length;
    // 循环读取对象的非基本类型字段的值
    for (int i = 0; i < objVals.length; i++) {
        // 调用 readObject0 方法读取对象的非基本类型字段的值
        ObjectStreamField f = fields[numPrimFields + i];
        objVals[i] = readObject0(Object.class, f.isUnshared());
        // 如果该字段是一个引用字段,则将其标记为依赖该对象
        if (f.getField() != null) {
            handles.markDependency(objHandle, passHandle);
        }
    }
    if (obj != null) {
        // 将 objVals 数组中的非基本类型字段的值设置到对象的相应字段中
        desc.setObjFieldValues(obj, objVals);
    }
    passHandle = objHandle;
}

我想看到这,你应该会恍然大悟的“哦”一声了。Serializable 接口之所以定义为空,是因为它只起到了一个标识的作用,告诉程序实现了它的对象是可以被序列化的,但真正序列化和反序列化的操作并不需要它来完成。

03、再来点注意事项

开门见山的说吧,statictransient 修饰的字段是不会被序列化的。

为什么呢?我们先来证明,再来解释原因。

首先,在 Wanger 类中增加两个字段。

class Wanger implements Serializable {
    private static final long serialVersionUID = -2095916884810199532L;

    private String name;
    private int age;

    public static String pre = "沉默";
    transient String meizi = "王三";

    @Override
    public String toString() {
        return "Wanger{" + "name=" + name + ",age=" + age + ",pre=" + pre + ",meizi=" + meizi + "}";
    }
}

其次,在测试类中打印序列化前和反序列化后的对象,并在序列化后和反序列化前改变 static 字段的值。具体代码如下:

// 初始化
Wanger wanger = new Wanger();
wanger.setName("王二");
wanger.setAge(18);
System.out.println(wanger);

// 把对象写到文件中
try (ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("chenmo"));){
        oos.writeObject(wanger);
    } catch (IOException e) {
        e.printStackTrace();
    }
   
    // 改变 static 字段的值
Wanger.pre ="不沉默";

// 从文件中读出对象
try (ObjectInputStream ois = new ObjectInputStream(new FileInputStream(new File("chenmo")));){
    Wanger wanger1 = (Wanger) ois.readObject();
    System.out.println(wanger1);
} catch (IOException | ClassNotFoundException e) {
    e.printStackTrace();
}

输出结果:

Wanger{name=王二,age=18,pre=沉默,meizi=王三}
Wanger{name=王二,age=18,pre=不沉默,meizi=null}

从结果的对比当中,我们可以发现:

1)序列化前,pre 的值为“沉默”,序列化后,pre 的值修改为“不沉默”,反序列化后,pre 的值为“不沉默”,而不是序列化前的状态“沉默”。

为什么呢?因为序列化保存的是对象的状态,而 static 修饰的字段属于类的状态,因此可以证明序列化并不保存 static 修饰的字段。

2)序列化前,meizi 的值为“王三”,反序列化后,meizi 的值为 null,而不是序列化前的状态“王三”。

为什么呢?transient 的中文字义为“临时的”(论英语的重要性),它可以阻止字段被序列化到文件中,在被反序列化后,transient 字段的值被设为初始值,比如 int 型的初始值为 0,对象型的初始值为 null

如果想要深究源码的话,你可以在 ObjectStreamClass 中发现下面这样的代码:

private static ObjectStreamField[] getDefaultSerialFields(Class<?> cl) {
    // 获取该类中声明的所有字段
    Field[] clFields = cl.getDeclaredFields();
    ArrayList<ObjectStreamField> list = new ArrayList<>();
    int mask = Modifier.STATIC | Modifier.TRANSIENT;

    // 遍历所有字段,将非 static 和 transient 的字段添加到 list 中
    for (int i = 0; i < clFields.length; i++) {
        Field field = clFields[i];
        int mods = field.getModifiers();
        if ((mods & mask) == 0) {
            // 根据字段名、字段类型和字段是否可序列化创建一个 ObjectStreamField 对象
            ObjectStreamField osf = new ObjectStreamField(field.getName(), field.getType(), !Serializable.class.isAssignableFrom(cl));
            list.add(osf);
        }
    }

    int size = list.size();
    // 如果 list 为空,则返回一个空的 ObjectStreamField 数组,否则将 list 转换为 ObjectStreamField 数组并返回
    return (size == 0) ? NO_FIELDS :
        list.toArray(new ObjectStreamField[size]);
}

看到 Modifier.STATIC | Modifier.TRANSIENT 了吧,这两个修饰符标记的字段就没有被放入到序列化的字段中,明白了吧?

04、再来点干货

除了 Serializable 之外,Java 还提供了一个序列化接口 Externalizable(念起来有点拗口)。

两个接口有什么不一样的吗?试一试就知道了。

首先,把 Wanger 类实现的接口 Serializable 替换为 Externalizable

class Wanger implements Externalizable {
	private String name;
	private int age;

	public Wanger() {

	}

	public String getName() {
		return name;
	}

	
	@Override
	public String toString() {
		return "Wanger{" + "name=" + name + ",age=" + age + "}";
	}

	@Override
	public void writeExternal(ObjectOutput out) throws IOException {

	}

	@Override
	public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {

	}

}

实现 Externalizable 接口的 Wanger 类和实现 Serializable 接口的 Wanger 类有一些不同:

1)新增了一个无参的构造方法。

使用 Externalizable 进行反序列化的时候,会调用被序列化类的无参构造方法去创建一个新的对象,然后再将被保存对象的字段值复制过去。否则的话,会抛出以下异常:

java.io.InvalidClassException: com.cmower.java_demo.xuliehua1.Wanger; no valid constructor
	at java.io.ObjectStreamClass$ExceptionInfo.newInvalidClassException(ObjectStreamClass.java:150)
	at java.io.ObjectStreamClass.checkDeserialize(ObjectStreamClass.java:790)
	at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1782)
	at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
	at java.io.ObjectInputStream.readObject(ObjectInputStream.java:373)
	at com.cmower.java_demo.xuliehua1.Test.main(Test.java:27)

2)新增了两个方法 writeExternal()readExternal(),实现 Externalizable 接口所必须的。

然后,我们再在测试类中打印序列化前和反序列化后的对象。

// 初始化
Wanger wanger = new Wanger();
wanger.setName("王二");
wanger.setAge(18);
System.out.println(wanger);

// 把对象写到文件中
try (ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("chenmo"));) {
	oos.writeObject(wanger);
} catch (IOException e) {
	e.printStackTrace();
}

// 从文件中读出对象
try (ObjectInputStream ois = new ObjectInputStream(new FileInputStream(new File("chenmo")));) {
	Wanger wanger1 = (Wanger) ois.readObject();
	System.out.println(wanger1);
} catch (IOException | ClassNotFoundException e) {
	e.printStackTrace();
}
// Wanger{name=王二,age=18}
// Wanger{name=null,age=0}

从输出的结果看,反序列化后得到的对象字段都变成了默认值,也就是说,序列化之前的对象状态没有被“冻结”下来。

为什么呢?因为我们没有为 Wanger 类重写具体的 writeExternal()readExternal() 方法。那该怎么重写呢?

@Override
public void writeExternal(ObjectOutput out) throws IOException {
	out.writeObject(name);
	out.writeInt(age);
}

@Override
public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
	name = (String) in.readObject();
	age = in.readInt();
}

1)调用 ObjectOutputwriteObject() 方法将字符串类型的 name 写入到输出流中;

2)调用 ObjectOutputwriteInt() 方法将整型的 age 写入到输出流中;

3)调用 ObjectInputreadObject() 方法将字符串类型的 name 读入到输入流中;

4)调用 ObjectInputreadInt() 方法将字符串类型的 age 读入到输入流中;

再运行一次测试了类,你会发现对象可以正常地序列化和反序列化了。

序列化前:Wanger{name=王二,age=18} 序列化后:Wanger{name=王二,age=18}

总结一下:

Externalizable 和 Serializable 都是用于实现 Java 对象的序列化和反序列化的接口,但是它们有以下区别:

①、Serializable 是 Java 标准库提供的接口,而 Externalizable 是 Serializable 的子接口;

②、Serializable 接口不需要实现任何方法,只需要将需要序列化的类标记为 Serializable 即可,而 Externalizable 接口需要实现 writeExternal 和 readExternal 两个方法;

③、Externalizable 接口提供了更高的序列化控制能力,可以在序列化和反序列化过程中对对象进行自定义的处理,如对一些敏感信息进行加密和解密。

05、再来点甜点

让我先问问你吧,你知道 private static final long serialVersionUID = -2095916884810199532L; 这段代码的作用吗?

嗯......

serialVersionUID 被称为序列化 ID,它是决定 Java 对象能否反序列化成功的重要因子。在反序列化时,Java 虚拟机会把字节流中的 serialVersionUID 与被序列化类中的 serialVersionUID 进行比较,如果相同则可以进行反序列化,否则就会抛出序列化版本不一致的异常。

当一个类实现了 Serializable 接口后,IDE 就会提醒该类最好产生一个序列化 ID,就像下面这样:

1)添加一个默认版本的序列化 ID:

private static final long serialVersionUID = 1L

2)添加一个随机生成的不重复的序列化 ID。

private static final long serialVersionUID = -2095916884810199532L;

3)添加 @SuppressWarnings 注解。

@SuppressWarnings("serial")

怎么选择呢?

首先,我们采用第二种办法,在被序列化类中添加一个随机生成的序列化 ID。

class Wanger implements Serializable {
	private static final long serialVersionUID = -2095916884810199532L;
	
	private String name;
	private int age;

	// 其他代码忽略
}

然后,序列化一个 Wanger 对象到文件中。

// 初始化
Wanger wanger = new Wanger();
wanger.setName("王二");
wanger.setAge(18);
System.out.println(wanger);

// 把对象写到文件中
try (ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("chenmo"));) {
	oos.writeObject(wanger);
} catch (IOException e) {
	e.printStackTrace();
}

这时候,我们悄悄地把 Wanger 类的序列化 ID 偷梁换柱一下,嘿嘿。

// private static final long serialVersionUID = -2095916884810199532L;
private static final long serialVersionUID = -2095916884810199533L;

好了,准备反序列化吧。

try (ObjectInputStream ois = new ObjectInputStream(new FileInputStream(new File("chenmo")));) {
	Wanger wanger = (Wanger) ois.readObject();
	System.out.println(wanger);
} catch (IOException | ClassNotFoundException e) {
	e.printStackTrace();
}

哎呀,出错了。

java.io.InvalidClassException:  local class incompatible: stream classdesc 
serialVersionUID = -2095916884810199532,
local class serialVersionUID = -2095916884810199533
	at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1521)
	at com.cmower.java_demo.xuliehua1.Test.main(Test.java:27)

异常堆栈信息里面告诉我们,从持久化文件里面读取到的序列化 ID 和本地的序列化 ID 不一致,无法反序列化。

那假如我们采用第三种方法,为 Wanger 类添加个 @SuppressWarnings("serial") 注解呢?

@SuppressWarnings("serial")
class Wanger implements Serializable {
// 省略其他代码
}

好了,再来一次反序列化吧。可惜依然报错。

java.io.InvalidClassException:  local class incompatible: stream classdesc 
serialVersionUID = -2095916884810199532, 
local class serialVersionUID = -3818877437117647968
	at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1521)
	at com.cmower.java_demo.xuliehua1.Test.main(Test.java:27)

异常堆栈信息里面告诉我们,本地的序列化 ID 为 -3818877437117647968,和持久化文件里面读取到的序列化 ID 仍然不一致,无法反序列化。这说明什么呢?使用 @SuppressWarnings("serial") 注解时,该注解会为被序列化类自动生成一个随机的序列化 ID。

由此可以证明,Java 虚拟机是否允许反序列化,不仅取决于类路径和功能代码是否一致,还有一个非常重要的因素就是序列化 ID 是否一致

也就是说,如果没有特殊需求,采用默认的序列化 ID(1L)就可以,这样可以确保代码一致时反序列化成功。

class Wanger implements Serializable {
	private static final long serialVersionUID = 1L;
// 省略其他代码
}

06、再来点总结

写这篇文章之前,我真没想到:“空空其身”的Serializable 竟然有这么多可以研究的内容!

写完这篇文章之后,我不由得想起理科状元曹林菁说说过的一句话:“在学习中再小的问题也不放过,每个知识点都要总结”——说得真真真真的对啊!


GitHub 上标星 10000+ 的开源知识库《二哥的 Java 进阶之路》第一版 PDF 终于来了!包括Java基础语法、数组&字符串、OOP、集合框架、Java IO、异常处理、Java 新特性、网络编程、NIO、并发编程、JVM等等,共计 32 万余字,500+张手绘图,可以说是通俗易懂、风趣幽默……详情戳:太赞了,GitHub 上标星 10000+ 的 Java 教程

微信搜 沉默王二 或扫描下方二维码关注二哥的原创公众号沉默王二,回复 222 即可免费领取。