-
Notifications
You must be signed in to change notification settings - Fork 3
/
open_world_cifar.py
142 lines (125 loc) · 5.33 KB
/
open_world_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from __future__ import print_function
from PIL import Image
import os
import os.path
import numpy as np
import sys
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
import torchvision
import torch.utils.data as data
from torchvision import transforms
import itertools
from torch.utils.data.sampler import Sampler
class OPENWORLDCIFAR100(torchvision.datasets.CIFAR100):
def __init__(self, root, labeled=True, labeled_num=50, labeled_ratio=0.5, rand_number=0, transform=None, target_transform=None, train=True,
download=False, unlabeled_idxs=None):
super(OPENWORLDCIFAR100, self).__init__(root, train, transform, target_transform, download)
if self.train:
downloaded_list = self.train_list
else:
downloaded_list = self.test_list
self.data = []
self.targets = []
# now load the picked numpy arrays
for file_name, checksum in downloaded_list:
file_path = os.path.join(self.root, self.base_folder, file_name)
with open(file_path, 'rb') as f:
entry = pickle.load(f, encoding='latin1')
self.data.append(entry['data'])
if 'labels' in entry:
self.targets.extend(entry['labels'])
else:
self.targets.extend(entry['fine_labels'])
self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
labeled_classes = range(labeled_num)
np.random.seed(rand_number)
if train:
if labeled:
self.labeled_idxs, self.unlabeled_idxs = self.get_labeled_index(labeled_classes, labeled_ratio)
self.shrink_data(self.labeled_idxs)
else:
self.shrink_data(unlabeled_idxs)
def get_labeled_index(self, labeled_classes, labeled_ratio):
labeled_idxs = []
unlabeled_idxs = []
for idx, label in enumerate(self.targets):
if label in labeled_classes and np.random.rand() < labeled_ratio:
labeled_idxs.append(idx)
else:
unlabeled_idxs.append(idx)
return labeled_idxs, unlabeled_idxs
def shrink_data(self, idxs):
targets = np.array(self.targets)
self.targets = targets[idxs].tolist()
self.data = self.data[idxs, ...]
class OPENWORLDCIFAR10(torchvision.datasets.CIFAR10):
def __init__(self, root, labeled=True, labeled_num=5, labeled_ratio=0.5, rand_number=0, transform=None, target_transform=None, train=True,
download=False, unlabeled_idxs=None):
super(OPENWORLDCIFAR10, self).__init__(root, train, transform, target_transform, download)
if self.train:
downloaded_list = self.train_list
else:
downloaded_list = self.test_list
self.data = []
self.targets = []
# now load the picked numpy arrays
for file_name, checksum in downloaded_list:
file_path = os.path.join(self.root, self.base_folder, file_name)
with open(file_path, 'rb') as f:
entry = pickle.load(f, encoding='latin1')
self.data.append(entry['data'])
if 'labels' in entry:
self.targets.extend(entry['labels'])
else:
self.targets.extend(entry['fine_labels'])
self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
labeled_classes = range(labeled_num)
np.random.seed(rand_number)
if labeled:
self.labeled_idxs, self.unlabeled_idxs = self.get_labeled_index(labeled_classes, labeled_ratio)
self.shrink_data(self.labeled_idxs)
else:
self.shrink_data(unlabeled_idxs)
def get_labeled_index(self, labeled_classes, labeled_ratio):
labeled_idxs = []
unlabeled_idxs = []
for idx, label in enumerate(self.targets):
if label in labeled_classes and np.random.rand() < labeled_ratio:
labeled_idxs.append(idx)
else:
unlabeled_idxs.append(idx)
return labeled_idxs, unlabeled_idxs
def shrink_data(self, idxs):
targets = np.array(self.targets)
self.targets = targets[idxs].tolist()
self.data = self.data[idxs, ...]
# Dictionary of transforms
dict_transform = {
'cifar_train_oldxxx': transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
]),
'cifar_train': transforms.Compose([
# transforms.RandomCrop(32, padding=4),
# transforms.RandomHorizontalFlip(),
transforms.RandomResizedCrop(32, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
]),
'cifar_test': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
}