在 autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->2.0.0-->3.8(ubuntu20.04)-->11.8 。
接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。
创建本次phi3实践的工作目录/root/autodl-tmp/phi3
# 创建工作目录
mkdir -p /root/autodl-tmp/phi3
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install fastapi==0.104.1
pip install uvicorn==0.24.0.post1
pip install requests==2.25.1
pip install modelscope==1.9.5
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
pip install langchain==0.1.15
由于phi3要求的transformers的版本为4.41.0.dev0版本
。
各位可以先通过下面命令查看你的Transformers包的版本
pip list |grep transformers
如果版本不对,可以通过下面命令升级
# phi3升级transformers为4.41.0.dev0版本
pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers
使用 modelscope 中的napshot_download
函数下载模型,第一个参数为模型名称,参数cache_dir
为模型的下载路径。
在 /root/autodl-tmp 路径下新建download.py
文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行python /root/autodl-tmp/download.py
执行下载,模型大小为 8 GB,下载模型大概需要 10~15 分钟
#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/Phi-3-mini-4k-instruct', cache_dir='/root/autodl-tmp/phi3', revision='master')
为便捷构建 LLM 应用,我们需要基于本地部署的 Phi-3-mini-4k-instruct,自定义一个 LLM 类,将 Phi-3-mini-4k-instruct 接入到 LangChain 框架中。完成自定义 LLM 类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。
基于本地部署的 Phi-3-mini-4k-instruct 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可。
我们新建一个py文件Phi3MiniLLM.py
,写入以下内容:
from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
class Phi3Mini_LLM(LLM):
# 基于本地 Phi-3-mini 自定义 LLM 类
tokenizer: AutoTokenizer = None
model: AutoModelForCausalLM = None
def __init__(self, mode_name_or_path :str):
super().__init__()
print("正在从本地加载模型...")
self.tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, use_fast=False)
self.model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,)
self.model.generation_config = GenerationConfig.from_pretrained(mode_name_or_path)
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
self.model = self.model.eval()
print("完成本地模型的加载")
def _call(self, prompt : str, stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any):
messages = [
{"role": "user", "content": prompt}
]
# 调用模型进行对话生成
input_ids = self.tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = self.model.generate(input_ids.to('cuda'),max_new_tokens=2048)
response = self.tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
return response
@property
def _llm_type(self) -> str:
return "Phi3Mini_LLM"
然后就可以像使用任何其他的langchain大模型功能一样使用了。在jupyter上运行
from Phi3MiniLLM import Phi3Mini_LLM
llm = Phi3Mini_LLM(mode_name_or_path = '/root/autodl-tmp/phi3/model/LLM-Research/Phi-3-mini-4k-instruct')
print(llm("你是谁"))
到这里,其实就已经把Phi-3-mini-4k-instruct 模型接入langchain了
通过langchain调用phi3-mini-4k-instruct 模型讲个故事
构建本地知识库数据。通过langchain搭建本地知识库小助手。