Skip to content

Latest commit

 

History

History
40 lines (34 loc) · 4.59 KB

MARL-basics.md

File metadata and controls

40 lines (34 loc) · 4.59 KB

Paper Collection of MARL

Contributors:

MARL Basic

CTDE : Centralized Training, Decentralized Execution

  1. VDN :Value-decomposition networks for cooperative multi-agent learning, Sunehag P, et al 2017.
  2. QMIX : Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning Rashid T, et al 2018, ICML
  3. QTRAN : Qtran: Learning to factorize with transformation for cooperative multi-agent reinforcement learning Son K, et al 2019, ICML
  4. QATTEN : Qatten: A general framework for cooperative multiagent reinforcement learning Yang Y, et al 2020.
  5. MADDPG : Multi-agent actor-critic for mixed cooperative-competitive environments Lowe R et al 2017, NIPS
  6. COMA : Counterfactual multi-agent policy gradients Foerster J et al 2018, AAAI
  7. MAPPO : Joint optimization of handover control and power allocation based on multi-agent deep reinforcement learning Guo D, et al 2020
  8. HATRPO & HAPPO : Trust region policy optimisation in multi-agent reinforcement learning Kuba J G, et al 2021
  9. MA3C : Asynchronous Actor-Critic for Multi-Agent Reinforcement Learning Xiao Y, et al 2022

DTDE : Decentralized Training, Decentralized Execution

IPPO : Is independent learning all you need in the starcraft multi-agent challenge? de Witt C S, et al 2020

Communication

  1. RIAL & DIAL: Learning to communicate with deep multi-agent reinforcement learning Foerster J, et al 2016, NIPS
  2. CommNet : Learning multiagent communication with backpropagation Sukhbaatar S, et al 2016, NIPS
  3. BicNet : Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning to play starcraft combat games Peng P, et al 2017.
  4. ATOC : Learning attentional communication for multi-agent cooperation Jiang J, et al 2018, NIPS
  5. IC3Net : Learning when to communicate at scale in multiagent cooperative and competitive tasks Singh A, et al 2018
  6. Tramac : Tarmac: Targeted multi-agent communication Das A, et al 2019, ICML
  7. NDQ : Learning nearly decomposable value functions via communication minimization Wang T, et al 2019
  8. SchedNet : Learning to schedule communication in multi-agent reinforcement learning Kim D, et al 2019
  9. Social influence as intrinsic motivation for multi-agent deep reinforcement learning Jaques N, et al 2019, ICML
  10. Infobot : Infobot: Transfer and exploration via the information bottleneck Goyal A, et al 2019

MARL FOR MAPF

  1. PRMIAL : Primal: Pathfinding via reinforcement and imitation multi-agent learning Sartoretti G, et al 2019, ICRA
  2. MARLSP : Learning to cooperate: Application of deep reinforcement learning for online AGV path finding Zhang Y, et al 2020, AAMAS
  3. MAPPER: Mapper: Multi-agent path planning with evolutionary reinforcement learning in mixed dynamic environments Liu Z, et a 2020, IROS
  4. G2RL : Mobile robot path planning in dynamic environments through globally guided reinforcement learning Wang B, et al 2020
  5. PRMIAL2 : PRIMAL2: Pathfinding via reinforcement and imitation multi-agent learning-lifelong Damani M, et al 2021, ICRA
  6. DHC :Distributed heuristic multi-agent path finding with communication Ma Z, et al 2021, ICRA
  7. PICO : Multi-Agent Path Finding with Prioritized Communication Learning Li W, et al 2022