diff --git a/README.md b/README.md index 8d0ca51..8b3afaa 100644 --- a/README.md +++ b/README.md @@ -2,8 +2,7 @@ ![logo of fglib](https://rawgit.com/danbar/fglib/master/docs/logo.svg) -fglib -===== +# fglib The factor graph library (fglib) is a Python package to simulate message passing on factor graphs. It supports the @@ -13,12 +12,11 @@ It supports the * max-sum algorithm * mean-field algorithm -on discrete and Gaussian random variables. +with discrete and Gaussian random variables. This Python package is build upon the Python packages [NetworkX](https://networkx.github.io/) and [NumPy](http://www.numpy.org/). -Dependencies ------------- +## Dependencies The following dependencies are required to run fglib: @@ -29,8 +27,7 @@ The following dependencies are required to run fglib: In addition, the Python package _setuptools_ is required to install fglib. -Documentation -------------- +## Documentation In order to generate the documentation site for the factor graph library, execute the following commands from the top-level directory. @@ -39,8 +36,7 @@ $ cd docs/ $ make html ``` -Example -------- +## Example ```Python """A simple example of the sum-product algorithm @@ -117,8 +113,7 @@ print("Belief of variable node x4:") print(belief) ``` -References ----------- +## References * H.-A. Loeliger, β€œAn introduction to factor graphs,” _IEEE Signal Process. Mag._, vol. 21, no. 1, pp. 28–41, Jan. 2004.