forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 4
/
counters.cc
270 lines (233 loc) · 9.73 KB
/
counters.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
* Copyright (C) 2016 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#include "counters.hh"
#include "mutation.hh"
#include "combine.hh"
std::ostream& operator<<(std::ostream& os, const counter_id& id) {
return os << id.to_uuid();
}
std::ostream& operator<<(std::ostream& os, counter_shard_view csv) {
return os << "{global_shard id: " << csv.id() << " value: " << csv.value()
<< " clock: " << csv.logical_clock() << "}";
}
std::ostream& operator<<(std::ostream& os, counter_cell_view ccv) {
return os << "{counter_cell timestamp: " << ccv.timestamp() << " shards: {" << ::join(", ", ccv.shards()) << "}}";
}
void counter_cell_builder::do_sort_and_remove_duplicates()
{
boost::range::sort(_shards, [] (auto& a, auto& b) { return a.id() < b.id(); });
std::vector<counter_shard> new_shards;
new_shards.reserve(_shards.size());
for (auto& cs : _shards) {
if (new_shards.empty() || new_shards.back().id() != cs.id()) {
new_shards.emplace_back(cs);
} else {
new_shards.back().apply(cs);
}
}
_shards = std::move(new_shards);
_sorted = true;
}
static bool apply_in_place(const column_definition& cdef, atomic_cell_mutable_view dst, atomic_cell_mutable_view src)
{
auto dst_ccmv = counter_cell_mutable_view(dst);
auto src_ccmv = counter_cell_mutable_view(src);
auto dst_shards = dst_ccmv.shards();
auto src_shards = src_ccmv.shards();
auto dst_it = dst_shards.begin();
auto src_it = src_shards.begin();
while (src_it != src_shards.end()) {
while (dst_it != dst_shards.end() && dst_it->id() < src_it->id()) {
++dst_it;
}
if (dst_it == dst_shards.end() || dst_it->id() != src_it->id()) {
// Fast-path failed. Revert and fall back to the slow path.
if (dst_it == dst_shards.end()) {
--dst_it;
}
while (src_it != src_shards.begin()) {
--src_it;
while (dst_it->id() != src_it->id()) {
--dst_it;
}
src_it->swap_value_and_clock(*dst_it);
}
return false;
}
if (dst_it->logical_clock() < src_it->logical_clock()) {
dst_it->swap_value_and_clock(*src_it);
} else {
src_it->set_value_and_clock(*dst_it);
}
++src_it;
}
auto dst_ts = dst_ccmv.timestamp();
auto src_ts = src_ccmv.timestamp();
dst_ccmv.set_timestamp(std::max(dst_ts, src_ts));
src_ccmv.set_timestamp(dst_ts);
return true;
}
void counter_cell_view::apply(const column_definition& cdef, atomic_cell_or_collection& dst, atomic_cell_or_collection& src)
{
auto dst_ac = dst.as_atomic_cell(cdef);
auto src_ac = src.as_atomic_cell(cdef);
if (!dst_ac.is_live() || !src_ac.is_live()) {
if (dst_ac.is_live() || (!src_ac.is_live() && compare_atomic_cell_for_merge(dst_ac, src_ac) < 0)) {
std::swap(dst, src);
}
return;
}
if (dst_ac.is_counter_update() && src_ac.is_counter_update()) {
auto src_v = src_ac.counter_update_value();
auto dst_v = dst_ac.counter_update_value();
dst = atomic_cell::make_live_counter_update(std::max(dst_ac.timestamp(), src_ac.timestamp()),
src_v + dst_v);
return;
}
assert(!dst_ac.is_counter_update());
assert(!src_ac.is_counter_update());
auto src_ccv = counter_cell_view(src_ac);
auto dst_ccv = counter_cell_view(dst_ac);
if (dst_ccv.shard_count() >= src_ccv.shard_count()) {
auto dst_amc = dst.as_mutable_atomic_cell(cdef);
auto src_amc = src.as_mutable_atomic_cell(cdef);
if (apply_in_place(cdef, dst_amc, src_amc)) {
return;
}
}
auto dst_shards = dst_ccv.shards();
auto src_shards = src_ccv.shards();
counter_cell_builder result;
combine(dst_shards.begin(), dst_shards.end(), src_shards.begin(), src_shards.end(),
result.inserter(), counter_shard_view::less_compare_by_id(), [] (auto& x, auto& y) {
return x.logical_clock() < y.logical_clock() ? y : x;
});
auto cell = result.build(std::max(dst_ac.timestamp(), src_ac.timestamp()));
src = std::exchange(dst, atomic_cell_or_collection(std::move(cell)));
}
std::optional<atomic_cell> counter_cell_view::difference(atomic_cell_view a, atomic_cell_view b)
{
assert(!a.is_counter_update());
assert(!b.is_counter_update());
if (!b.is_live() || !a.is_live()) {
if (b.is_live() || (!a.is_live() && compare_atomic_cell_for_merge(b, a) < 0)) {
return atomic_cell(*counter_type, a);
}
return { };
}
auto a_ccv = counter_cell_view(a);
auto b_ccv = counter_cell_view(b);
auto a_shards = a_ccv.shards();
auto b_shards = b_ccv.shards();
auto a_it = a_shards.begin();
auto a_end = a_shards.end();
auto b_it = b_shards.begin();
auto b_end = b_shards.end();
counter_cell_builder result;
while (a_it != a_end) {
while (b_it != b_end && (*b_it).id() < (*a_it).id()) {
++b_it;
}
if (b_it == b_end || (*a_it).id() != (*b_it).id() || (*a_it).logical_clock() > (*b_it).logical_clock()) {
result.add_shard(counter_shard(*a_it));
}
++a_it;
}
std::optional<atomic_cell> diff;
if (!result.empty()) {
diff = result.build(std::max(a.timestamp(), b.timestamp()));
} else if (a.timestamp() > b.timestamp()) {
diff = atomic_cell::make_live(*counter_type, a.timestamp(), bytes_view());
}
return diff;
}
void transform_counter_updates_to_shards(mutation& m, const mutation* current_state, uint64_t clock_offset, utils::UUID local_id) {
// FIXME: allow current_state to be frozen_mutation
auto transform_new_row_to_shards = [&s = *m.schema(), clock_offset, local_id] (column_kind kind, auto& cells) {
cells.for_each_cell([&] (column_id id, atomic_cell_or_collection& ac_o_c) {
auto& cdef = s.column_at(kind, id);
auto acv = ac_o_c.as_atomic_cell(cdef);
if (!acv.is_live()) {
return; // continue -- we are in lambda
}
auto delta = acv.counter_update_value();
auto cs = counter_shard(counter_id(local_id), delta, clock_offset + 1);
ac_o_c = counter_cell_builder::from_single_shard(acv.timestamp(), cs);
});
};
if (!current_state) {
transform_new_row_to_shards(column_kind::static_column, m.partition().static_row());
for (auto& cr : m.partition().clustered_rows()) {
transform_new_row_to_shards(column_kind::regular_column, cr.row().cells());
}
return;
}
clustering_key::less_compare cmp(*m.schema());
auto transform_row_to_shards = [&s = *m.schema(), clock_offset, local_id] (column_kind kind, auto& transformee, auto& state) {
std::deque<std::pair<column_id, counter_shard>> shards;
state.for_each_cell([&] (column_id id, const atomic_cell_or_collection& ac_o_c) {
auto& cdef = s.column_at(kind, id);
auto acv = ac_o_c.as_atomic_cell(cdef);
if (!acv.is_live()) {
return; // continue -- we are in lambda
}
auto ccv = counter_cell_view(acv);
auto cs = ccv.get_shard(counter_id(local_id));
if (!cs) {
return; // continue
}
shards.emplace_back(std::make_pair(id, counter_shard(*cs)));
});
transformee.for_each_cell([&] (column_id id, atomic_cell_or_collection& ac_o_c) {
auto& cdef = s.column_at(kind, id);
auto acv = ac_o_c.as_atomic_cell(cdef);
if (!acv.is_live()) {
return; // continue -- we are in lambda
}
while (!shards.empty() && shards.front().first < id) {
shards.pop_front();
}
auto delta = acv.counter_update_value();
if (shards.empty() || shards.front().first > id) {
auto cs = counter_shard(counter_id(local_id), delta, clock_offset + 1);
ac_o_c = counter_cell_builder::from_single_shard(acv.timestamp(), cs);
} else {
auto& cs = shards.front().second;
cs.update(delta, clock_offset + 1);
ac_o_c = counter_cell_builder::from_single_shard(acv.timestamp(), cs);
shards.pop_front();
}
});
};
transform_row_to_shards(column_kind::static_column, m.partition().static_row(), current_state->partition().static_row());
auto& cstate = current_state->partition();
auto it = cstate.clustered_rows().begin();
auto end = cstate.clustered_rows().end();
for (auto& cr : m.partition().clustered_rows()) {
while (it != end && cmp(it->key(), cr.key())) {
++it;
}
if (it == end || cmp(cr.key(), it->key())) {
transform_new_row_to_shards(column_kind::regular_column, cr.row().cells());
continue;
}
transform_row_to_shards(column_kind::regular_column, cr.row().cells(), it->row().cells());
}
}