forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 4
/
cache_flat_mutation_reader.hh
795 lines (739 loc) · 34.8 KB
/
cache_flat_mutation_reader.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
/*
* Copyright (C) 2017 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <vector>
#include "row_cache.hh"
#include "mutation_reader.hh"
#include "mutation_fragment.hh"
#include "partition_version.hh"
#include "utils/logalloc.hh"
#include "query-request.hh"
#include "partition_snapshot_row_cursor.hh"
#include "read_context.hh"
#include "flat_mutation_reader.hh"
namespace cache {
extern logging::logger clogger;
class cache_flat_mutation_reader final : public flat_mutation_reader::impl {
enum class state {
before_static_row,
// Invariants:
// - position_range(_lower_bound, _upper_bound) covers all not yet emitted positions from current range
// - if _next_row has valid iterators:
// - _next_row points to the nearest row in cache >= _lower_bound
// - _next_row_in_range = _next.position() < _upper_bound
// - if _next_row doesn't have valid iterators, it has no meaning.
reading_from_cache,
// Starts reading from underlying reader.
// The range to read is position_range(_lower_bound, min(_next_row.position(), _upper_bound)).
// Invariants:
// - _next_row_in_range = _next.position() < _upper_bound
move_to_underlying,
// Invariants:
// - Upper bound of the read is min(_next_row.position(), _upper_bound)
// - _next_row_in_range = _next.position() < _upper_bound
// - _last_row points at a direct predecessor of the next row which is going to be read.
// Used for populating continuity.
// - _population_range_starts_before_all_rows is set accordingly
// - _underlying is engaged and fast-forwarded
reading_from_underlying,
end_of_stream
};
partition_snapshot_ptr _snp;
query::clustering_key_filter_ranges _ck_ranges;
query::clustering_row_ranges::const_iterator _ck_ranges_curr;
query::clustering_row_ranges::const_iterator _ck_ranges_end;
lsa_manager _lsa_manager;
partition_snapshot_row_weakref _last_row;
// Holds the lower bound of a position range which hasn't been processed yet.
// Only rows with positions < _lower_bound have been emitted, and only
// range_tombstones with positions <= _lower_bound.
position_in_partition _lower_bound;
position_in_partition_view _upper_bound;
// cache_flat_mutation_reader may be constructed either
// with a read_context&, where it knows that the read_context
// is owned externally, by the caller. In this case
// _read_context_holder would be disengaged.
// Or, it could be constructed with a std::unique_ptr<read_context>,
// in which case it assumes ownership of the read_context
// and it is now responsible for closing it.
// In this case, _read_context_holder would be engaged
// and _read_context will reference its content.
std::unique_ptr<read_context> _read_context_holder;
read_context& _read_context;
partition_snapshot_row_cursor _next_row;
state _state = state::before_static_row;
bool _next_row_in_range = false;
// True iff current population interval, since the previous clustering row, starts before all clustered rows.
// We cannot just look at _lower_bound, because emission of range tombstones changes _lower_bound and
// because we mark clustering intervals as continuous when consuming a clustering_row, it would prevent
// us from marking the interval as continuous.
// Valid when _state == reading_from_underlying.
bool _population_range_starts_before_all_rows;
// Whether _lower_bound was changed within current fill_buffer().
// If it did not then we cannot break out of it (e.g. on preemption) because
// forward progress is not guaranteed in case iterators are getting constantly invalidated.
bool _lower_bound_changed = false;
// Points to the underlying reader conforming to _schema,
// either to *_underlying_holder or _read_context.underlying().underlying().
flat_mutation_reader* _underlying = nullptr;
flat_mutation_reader_opt _underlying_holder;
future<> do_fill_buffer(db::timeout_clock::time_point);
future<> ensure_underlying(db::timeout_clock::time_point);
void copy_from_cache_to_buffer();
future<> process_static_row(db::timeout_clock::time_point);
void move_to_end();
void move_to_next_range();
void move_to_range(query::clustering_row_ranges::const_iterator);
void move_to_next_entry();
void maybe_drop_last_entry() noexcept;
void add_to_buffer(const partition_snapshot_row_cursor&);
void add_clustering_row_to_buffer(mutation_fragment&&);
void add_to_buffer(range_tombstone&&);
void add_range_tombstone_to_buffer(range_tombstone&&);
void add_to_buffer(mutation_fragment&&);
future<> read_from_underlying(db::timeout_clock::time_point);
void start_reading_from_underlying();
bool after_current_range(position_in_partition_view position);
bool can_populate() const;
// Marks the range between _last_row (exclusive) and _next_row (exclusive) as continuous,
// provided that the underlying reader still matches the latest version of the partition.
// Invalidates _last_row.
void maybe_update_continuity();
// Tries to ensure that the lower bound of the current population range exists.
// Returns false if it failed and range cannot be populated.
// Assumes can_populate().
bool ensure_population_lower_bound();
void maybe_add_to_cache(const mutation_fragment& mf);
void maybe_add_to_cache(const clustering_row& cr);
void maybe_add_to_cache(const range_tombstone& rt);
void maybe_add_to_cache(const static_row& sr);
void maybe_set_static_row_continuous();
void finish_reader() {
push_mutation_fragment(*_schema, _permit, partition_end());
_end_of_stream = true;
_state = state::end_of_stream;
}
void touch_partition();
public:
cache_flat_mutation_reader(schema_ptr s,
dht::decorated_key dk,
query::clustering_key_filter_ranges&& crr,
read_context& ctx,
partition_snapshot_ptr snp,
row_cache& cache)
: flat_mutation_reader::impl(std::move(s), ctx.permit())
, _snp(std::move(snp))
, _ck_ranges(std::move(crr))
, _ck_ranges_curr(_ck_ranges.begin())
, _ck_ranges_end(_ck_ranges.end())
, _lsa_manager(cache)
, _lower_bound(position_in_partition::before_all_clustered_rows())
, _upper_bound(position_in_partition_view::before_all_clustered_rows())
, _read_context_holder()
, _read_context(ctx) // ctx is owned by the caller, who's responsible for closing it.
, _next_row(*_schema, *_snp)
{
clogger.trace("csm {}: table={}.{}", fmt::ptr(this), _schema->ks_name(), _schema->cf_name());
push_mutation_fragment(*_schema, _permit, partition_start(std::move(dk), _snp->partition_tombstone()));
}
cache_flat_mutation_reader(schema_ptr s,
dht::decorated_key dk,
query::clustering_key_filter_ranges&& crr,
std::unique_ptr<read_context> unique_ctx,
partition_snapshot_ptr snp,
row_cache& cache)
: cache_flat_mutation_reader(s, std::move(dk), std::move(crr), *unique_ctx, std::move(snp), cache)
{
// Assume ownership of the read_context.
// It is our responsibility to close it now.
_read_context_holder = std::move(unique_ctx);
}
cache_flat_mutation_reader(const cache_flat_mutation_reader&) = delete;
cache_flat_mutation_reader(cache_flat_mutation_reader&&) = delete;
virtual future<> fill_buffer(db::timeout_clock::time_point timeout) override;
virtual future<> next_partition() override {
clear_buffer_to_next_partition();
if (is_buffer_empty()) {
_end_of_stream = true;
}
return make_ready_future<>();
}
virtual future<> fast_forward_to(const dht::partition_range&, db::timeout_clock::time_point timeout) override {
clear_buffer();
_end_of_stream = true;
return make_ready_future<>();
}
virtual future<> fast_forward_to(position_range pr, db::timeout_clock::time_point timeout) override {
return make_exception_future<>(make_backtraced_exception_ptr<std::bad_function_call>());
}
virtual future<> close() noexcept {
auto close_read_context = _read_context_holder ? _read_context_holder->close() : make_ready_future<>();
auto close_underlying = _underlying_holder ? _underlying_holder->close() : make_ready_future<>();
return when_all_succeed(std::move(close_read_context), std::move(close_underlying)).discard_result();
}
};
inline
future<> cache_flat_mutation_reader::process_static_row(db::timeout_clock::time_point timeout) {
if (_snp->static_row_continuous()) {
_read_context.cache().on_row_hit();
static_row sr = _lsa_manager.run_in_read_section([this] {
return _snp->static_row(_read_context.digest_requested());
});
if (!sr.empty()) {
push_mutation_fragment(mutation_fragment(*_schema, _permit, std::move(sr)));
}
return make_ready_future<>();
} else {
_read_context.cache().on_row_miss();
return ensure_underlying(timeout).then([this, timeout] {
return (*_underlying)(timeout).then([this] (mutation_fragment_opt&& sr) {
if (sr) {
assert(sr->is_static_row());
maybe_add_to_cache(sr->as_static_row());
push_mutation_fragment(std::move(*sr));
}
maybe_set_static_row_continuous();
});
});
}
}
inline
void cache_flat_mutation_reader::touch_partition() {
_snp->touch();
}
inline
future<> cache_flat_mutation_reader::fill_buffer(db::timeout_clock::time_point timeout) {
if (_state == state::before_static_row) {
touch_partition();
auto after_static_row = [this, timeout] {
if (_ck_ranges_curr == _ck_ranges_end) {
finish_reader();
return make_ready_future<>();
}
_state = state::reading_from_cache;
_lsa_manager.run_in_read_section([this] {
move_to_range(_ck_ranges_curr);
});
return fill_buffer(timeout);
};
if (_schema->has_static_columns()) {
return process_static_row(timeout).then(std::move(after_static_row));
} else {
return after_static_row();
}
}
clogger.trace("csm {}: fill_buffer(), range={}, lb={}", fmt::ptr(this), *_ck_ranges_curr, _lower_bound);
return do_until([this] { return _end_of_stream || is_buffer_full(); }, [this, timeout] {
return do_fill_buffer(timeout);
});
}
inline
future<> cache_flat_mutation_reader::ensure_underlying(db::timeout_clock::time_point timeout) {
if (_underlying) {
return make_ready_future<>();
}
return _read_context.ensure_underlying(timeout).then([this] {
flat_mutation_reader& ctx_underlying = _read_context.underlying().underlying();
if (ctx_underlying.schema() != _schema) {
_underlying_holder = make_delegating_reader(ctx_underlying);
_underlying_holder->upgrade_schema(_schema);
_underlying = &*_underlying_holder;
} else {
_underlying = &ctx_underlying;
}
});
}
inline
future<> cache_flat_mutation_reader::do_fill_buffer(db::timeout_clock::time_point timeout) {
if (_state == state::move_to_underlying) {
if (!_underlying) {
return ensure_underlying(timeout).then([this, timeout] {
return do_fill_buffer(timeout);
});
}
_state = state::reading_from_underlying;
_population_range_starts_before_all_rows = _lower_bound.is_before_all_clustered_rows(*_schema);
if (!_read_context.partition_exists()) {
return read_from_underlying(timeout);
}
auto end = _next_row_in_range ? position_in_partition(_next_row.position())
: position_in_partition(_upper_bound);
return _underlying->fast_forward_to(position_range{_lower_bound, std::move(end)}, timeout).then([this, timeout] {
return read_from_underlying(timeout);
});
}
if (_state == state::reading_from_underlying) {
return read_from_underlying(timeout);
}
// assert(_state == state::reading_from_cache)
return _lsa_manager.run_in_read_section([this] {
auto next_valid = _next_row.iterators_valid();
clogger.trace("csm {}: reading_from_cache, range=[{}, {}), next={}, valid={}", fmt::ptr(this), _lower_bound,
_upper_bound, _next_row.position(), next_valid);
// We assume that if there was eviction, and thus the range may
// no longer be continuous, the cursor was invalidated.
if (!next_valid) {
auto adjacent = _next_row.advance_to(_lower_bound);
_next_row_in_range = !after_current_range(_next_row.position());
if (!adjacent && !_next_row.continuous()) {
_last_row = nullptr; // We could insert a dummy here, but this path is unlikely.
start_reading_from_underlying();
return make_ready_future<>();
}
}
_next_row.maybe_refresh();
clogger.trace("csm {}: next={}, cont={}", fmt::ptr(this), _next_row.position(), _next_row.continuous());
_lower_bound_changed = false;
while (_state == state::reading_from_cache) {
copy_from_cache_to_buffer();
// We need to check _lower_bound_changed even if is_buffer_full() because
// we may have emitted only a range tombstone which overlapped with _lower_bound
// and thus didn't cause _lower_bound to change.
if ((need_preempt() || is_buffer_full()) && _lower_bound_changed) {
break;
}
}
return make_ready_future<>();
});
}
inline
future<> cache_flat_mutation_reader::read_from_underlying(db::timeout_clock::time_point timeout) {
return consume_mutation_fragments_until(*_underlying,
[this] { return _state != state::reading_from_underlying || is_buffer_full(); },
[this] (mutation_fragment mf) {
_read_context.cache().on_row_miss();
maybe_add_to_cache(mf);
add_to_buffer(std::move(mf));
},
[this] {
_state = state::reading_from_cache;
_lsa_manager.run_in_update_section([this] {
auto same_pos = _next_row.maybe_refresh();
if (!same_pos) {
_read_context.cache().on_mispopulate(); // FIXME: Insert dummy entry at _upper_bound.
_next_row_in_range = !after_current_range(_next_row.position());
if (!_next_row.continuous()) {
start_reading_from_underlying();
}
return;
}
if (_next_row_in_range) {
maybe_update_continuity();
add_to_buffer(_next_row);
try {
move_to_next_entry();
} catch (const std::bad_alloc&) {
// We cannot reenter the section, since we may have moved to the new range, and
// because add_to_buffer() should not be repeated.
_snp->region().allocator().invalidate_references(); // Invalidates _next_row
}
} else {
if (no_clustering_row_between(*_schema, _upper_bound, _next_row.position())) {
this->maybe_update_continuity();
} else if (can_populate()) {
rows_entry::tri_compare cmp(*_schema);
auto& rows = _snp->version()->partition().clustered_rows();
if (query::is_single_row(*_schema, *_ck_ranges_curr)) {
with_allocator(_snp->region().allocator(), [&] {
auto e = alloc_strategy_unique_ptr<rows_entry>(
current_allocator().construct<rows_entry>(_ck_ranges_curr->start()->value()));
// Use _next_row iterator only as a hint, because there could be insertions after _upper_bound.
auto insert_result = rows.insert_before_hint(_next_row.get_iterator_in_latest_version(), std::move(e), cmp);
if (insert_result.second) {
auto it = insert_result.first;
_snp->tracker()->insert(*it);
auto next = std::next(it);
it->set_continuous(next->continuous());
clogger.trace("csm {}: inserted empty row at {}, cont={}", fmt::ptr(this), it->position(), it->continuous());
}
});
} else if (ensure_population_lower_bound()) {
with_allocator(_snp->region().allocator(), [&] {
auto e = alloc_strategy_unique_ptr<rows_entry>(
current_allocator().construct<rows_entry>(*_schema, _upper_bound, is_dummy::yes, is_continuous::yes));
// Use _next_row iterator only as a hint, because there could be insertions after _upper_bound.
auto insert_result = rows.insert_before_hint(_next_row.get_iterator_in_latest_version(), std::move(e), cmp);
if (insert_result.second) {
clogger.trace("csm {}: inserted dummy at {}", fmt::ptr(this), _upper_bound);
_snp->tracker()->insert(*insert_result.first);
} else {
clogger.trace("csm {}: mark {} as continuous", fmt::ptr(this), insert_result.first->position());
insert_result.first->set_continuous(true);
}
maybe_drop_last_entry();
});
}
} else {
_read_context.cache().on_mispopulate();
}
try {
move_to_next_range();
} catch (const std::bad_alloc&) {
// We cannot reenter the section, since we may have moved to the new range
_snp->region().allocator().invalidate_references(); // Invalidates _next_row
}
}
});
return make_ready_future<>();
}, timeout);
}
inline
bool cache_flat_mutation_reader::ensure_population_lower_bound() {
if (_population_range_starts_before_all_rows) {
return true;
}
if (!_last_row.refresh(*_snp)) {
return false;
}
// Continuity flag we will later set for the upper bound extends to the previous row in the same version,
// so we need to ensure we have an entry in the latest version.
if (!_last_row.is_in_latest_version()) {
with_allocator(_snp->region().allocator(), [&] {
auto& rows = _snp->version()->partition().clustered_rows();
rows_entry::tri_compare cmp(*_schema);
// FIXME: Avoid the copy by inserting an incomplete clustering row
auto e = alloc_strategy_unique_ptr<rows_entry>(
current_allocator().construct<rows_entry>(*_schema, *_last_row));
e->set_continuous(false);
auto insert_result = rows.insert_before_hint(rows.end(), std::move(e), cmp);
if (insert_result.second) {
auto it = insert_result.first;
clogger.trace("csm {}: inserted lower bound dummy at {}", fmt::ptr(this), it->position());
_snp->tracker()->insert(*it);
}
});
}
return true;
}
inline
void cache_flat_mutation_reader::maybe_update_continuity() {
if (can_populate() && ensure_population_lower_bound()) {
with_allocator(_snp->region().allocator(), [&] {
rows_entry& e = _next_row.ensure_entry_in_latest().row;
e.set_continuous(true);
maybe_drop_last_entry();
});
} else {
_read_context.cache().on_mispopulate();
}
}
inline
void cache_flat_mutation_reader::maybe_add_to_cache(const mutation_fragment& mf) {
if (mf.is_range_tombstone()) {
maybe_add_to_cache(mf.as_range_tombstone());
} else {
assert(mf.is_clustering_row());
const clustering_row& cr = mf.as_clustering_row();
maybe_add_to_cache(cr);
}
}
inline
void cache_flat_mutation_reader::maybe_add_to_cache(const clustering_row& cr) {
if (!can_populate()) {
_last_row = nullptr;
_population_range_starts_before_all_rows = false;
_read_context.cache().on_mispopulate();
return;
}
clogger.trace("csm {}: populate({})", fmt::ptr(this), clustering_row::printer(*_schema, cr));
_lsa_manager.run_in_update_section_with_allocator([this, &cr] {
mutation_partition& mp = _snp->version()->partition();
rows_entry::tri_compare cmp(*_schema);
if (_read_context.digest_requested()) {
cr.cells().prepare_hash(*_schema, column_kind::regular_column);
}
auto new_entry = alloc_strategy_unique_ptr<rows_entry>(
current_allocator().construct<rows_entry>(*_schema, cr.key(), cr.as_deletable_row()));
new_entry->set_continuous(false);
auto it = _next_row.iterators_valid() ? _next_row.get_iterator_in_latest_version()
: mp.clustered_rows().lower_bound(cr.key(), cmp);
auto insert_result = mp.clustered_rows().insert_before_hint(it, std::move(new_entry), cmp);
it = insert_result.first;
if (insert_result.second) {
_snp->tracker()->insert(*it);
}
rows_entry& e = *it;
if (ensure_population_lower_bound()) {
clogger.trace("csm {}: set_continuous({})", fmt::ptr(this), e.position());
e.set_continuous(true);
} else {
_read_context.cache().on_mispopulate();
}
with_allocator(standard_allocator(), [&] {
_last_row = partition_snapshot_row_weakref(*_snp, it, true);
});
_population_range_starts_before_all_rows = false;
});
}
inline
bool cache_flat_mutation_reader::after_current_range(position_in_partition_view p) {
position_in_partition::tri_compare cmp(*_schema);
return cmp(p, _upper_bound) >= 0;
}
inline
void cache_flat_mutation_reader::start_reading_from_underlying() {
clogger.trace("csm {}: start_reading_from_underlying(), range=[{}, {})", fmt::ptr(this), _lower_bound, _next_row_in_range ? _next_row.position() : _upper_bound);
_state = state::move_to_underlying;
_next_row.touch();
}
inline
void cache_flat_mutation_reader::copy_from_cache_to_buffer() {
clogger.trace("csm {}: copy_from_cache, next={}, next_row_in_range={}", fmt::ptr(this), _next_row.position(), _next_row_in_range);
_next_row.touch();
position_in_partition_view next_lower_bound = _next_row.dummy() ? _next_row.position() : position_in_partition_view::after_key(_next_row.key());
for (auto &&rts : _snp->range_tombstones(_lower_bound, _next_row_in_range ? next_lower_bound : _upper_bound)) {
add_range_tombstone_to_buffer(std::move(rts));
if (_lower_bound_changed && is_buffer_full()) {
return;
}
}
// We add the row to the buffer even when it's full.
// This simplifies the code. For more info see #3139.
if (_next_row_in_range) {
add_to_buffer(_next_row);
move_to_next_entry();
} else {
move_to_next_range();
}
}
inline
void cache_flat_mutation_reader::move_to_end() {
finish_reader();
clogger.trace("csm {}: eos", fmt::ptr(this));
}
inline
void cache_flat_mutation_reader::move_to_next_range() {
auto next_it = std::next(_ck_ranges_curr);
if (next_it == _ck_ranges_end) {
move_to_end();
_ck_ranges_curr = next_it;
} else {
move_to_range(next_it);
}
}
inline
void cache_flat_mutation_reader::move_to_range(query::clustering_row_ranges::const_iterator next_it) {
auto lb = position_in_partition::for_range_start(*next_it);
auto ub = position_in_partition_view::for_range_end(*next_it);
_last_row = nullptr;
_lower_bound = std::move(lb);
_upper_bound = std::move(ub);
_lower_bound_changed = true;
_ck_ranges_curr = next_it;
auto adjacent = _next_row.advance_to(_lower_bound);
_next_row_in_range = !after_current_range(_next_row.position());
clogger.trace("csm {}: move_to_range(), range={}, lb={}, ub={}, next={}", fmt::ptr(this), *_ck_ranges_curr, _lower_bound, _upper_bound, _next_row.position());
if (!adjacent && !_next_row.continuous()) {
// FIXME: We don't insert a dummy for singular range to avoid allocating 3 entries
// for a hit (before, at and after). If we supported the concept of an incomplete row,
// we could insert such a row for the lower bound if it's full instead, for both singular and
// non-singular ranges.
if (_ck_ranges_curr->start() && !query::is_single_row(*_schema, *_ck_ranges_curr)) {
// Insert dummy for lower bound
if (can_populate()) {
// FIXME: _lower_bound could be adjacent to the previous row, in which case we could skip this
clogger.trace("csm {}: insert dummy at {}", fmt::ptr(this), _lower_bound);
auto it = with_allocator(_lsa_manager.region().allocator(), [&] {
auto& rows = _snp->version()->partition().clustered_rows();
auto new_entry = current_allocator().construct<rows_entry>(*_schema, _lower_bound, is_dummy::yes, is_continuous::no);
return rows.insert_before(_next_row.get_iterator_in_latest_version(), *new_entry);
});
_snp->tracker()->insert(*it);
_last_row = partition_snapshot_row_weakref(*_snp, it, true);
} else {
_read_context.cache().on_mispopulate();
}
}
start_reading_from_underlying();
}
}
// Drops _last_row entry when possible without changing logical contents of the partition.
// Call only when _last_row and _next_row are valid.
// Calling after ensure_population_lower_bound() is ok.
// _next_row must have a greater position than _last_row.
// Invalidates references but keeps the _next_row valid.
inline
void cache_flat_mutation_reader::maybe_drop_last_entry() noexcept {
// Drop dummy entry if it falls inside a continuous range.
// This prevents unnecessary dummy entries from accumulating in cache and slowing down scans.
//
// Eviction can happen only from oldest versions to preserve the continuity non-overlapping rule
// (See docs/design-notes/row_cache.md)
//
if (_last_row
&& _last_row->dummy()
&& _last_row->continuous()
&& _snp->at_latest_version()
&& _snp->at_oldest_version()) {
with_allocator(_snp->region().allocator(), [&] {
_last_row->on_evicted(_read_context.cache()._tracker);
});
_last_row = nullptr;
// There could be iterators pointing to _last_row, invalidate them
_snp->region().allocator().invalidate_references();
// Don't invalidate _next_row, move_to_next_entry() expects it to be still valid.
_next_row.force_valid();
}
}
// _next_row must be inside the range.
inline
void cache_flat_mutation_reader::move_to_next_entry() {
clogger.trace("csm {}: move_to_next_entry(), curr={}", fmt::ptr(this), _next_row.position());
if (no_clustering_row_between(*_schema, _next_row.position(), _upper_bound)) {
move_to_next_range();
} else {
auto new_last_row = partition_snapshot_row_weakref(_next_row);
if (!_next_row.next()) {
move_to_end();
return;
}
_last_row = std::move(new_last_row);
_next_row_in_range = !after_current_range(_next_row.position());
clogger.trace("csm {}: next={}, cont={}, in_range={}", fmt::ptr(this), _next_row.position(), _next_row.continuous(), _next_row_in_range);
if (!_next_row.continuous()) {
start_reading_from_underlying();
} else {
maybe_drop_last_entry();
}
}
}
inline
void cache_flat_mutation_reader::add_to_buffer(mutation_fragment&& mf) {
clogger.trace("csm {}: add_to_buffer({})", fmt::ptr(this), mutation_fragment::printer(*_schema, mf));
if (mf.is_clustering_row()) {
add_clustering_row_to_buffer(std::move(mf));
} else {
assert(mf.is_range_tombstone());
add_to_buffer(std::move(mf).as_range_tombstone());
}
}
inline
void cache_flat_mutation_reader::add_to_buffer(const partition_snapshot_row_cursor& row) {
if (!row.dummy()) {
_read_context.cache().on_row_hit();
if (_read_context.digest_requested()) {
row.latest_row().cells().prepare_hash(*_schema, column_kind::regular_column);
}
add_clustering_row_to_buffer(mutation_fragment(*_schema, _permit, row.row()));
} else {
position_in_partition::less_compare less(*_schema);
if (less(_lower_bound, row.position())) {
_lower_bound = row.position();
_lower_bound_changed = true;
}
_read_context.cache()._tracker.on_dummy_row_hit();
}
}
// Maintains the following invariants, also in case of exception:
// (1) no fragment with position >= _lower_bound was pushed yet
// (2) If _lower_bound > mf.position(), mf was emitted
inline
void cache_flat_mutation_reader::add_clustering_row_to_buffer(mutation_fragment&& mf) {
clogger.trace("csm {}: add_clustering_row_to_buffer({})", fmt::ptr(this), mutation_fragment::printer(*_schema, mf));
auto& row = mf.as_clustering_row();
auto new_lower_bound = position_in_partition::after_key(row.key());
push_mutation_fragment(std::move(mf));
_lower_bound = std::move(new_lower_bound);
_lower_bound_changed = true;
}
inline
void cache_flat_mutation_reader::add_to_buffer(range_tombstone&& rt) {
clogger.trace("csm {}: add_to_buffer({})", fmt::ptr(this), rt);
// This guarantees that rt starts after any emitted clustering_row
// and not before any emitted range tombstone.
position_in_partition::less_compare less(*_schema);
if (less(_lower_bound, rt.end_position())) {
add_range_tombstone_to_buffer(std::move(rt));
}
}
inline
void cache_flat_mutation_reader::add_range_tombstone_to_buffer(range_tombstone&& rt) {
position_in_partition::less_compare less(*_schema);
if (!less(_lower_bound, rt.position())) {
rt.set_start(_lower_bound);
} else {
_lower_bound = position_in_partition(rt.position());
_lower_bound_changed = true;
}
push_mutation_fragment(*_schema, _permit, std::move(rt));
}
inline
void cache_flat_mutation_reader::maybe_add_to_cache(const range_tombstone& rt) {
if (can_populate()) {
clogger.trace("csm {}: maybe_add_to_cache({})", fmt::ptr(this), rt);
_lsa_manager.run_in_update_section_with_allocator([&] {
_snp->version()->partition().row_tombstones().apply_monotonically(*_schema, rt);
});
} else {
_read_context.cache().on_mispopulate();
}
}
inline
void cache_flat_mutation_reader::maybe_add_to_cache(const static_row& sr) {
if (can_populate()) {
clogger.trace("csm {}: populate({})", fmt::ptr(this), static_row::printer(*_schema, sr));
_read_context.cache().on_static_row_insert();
_lsa_manager.run_in_update_section_with_allocator([&] {
if (_read_context.digest_requested()) {
sr.cells().prepare_hash(*_schema, column_kind::static_column);
}
_snp->version()->partition().static_row().apply(*_schema, column_kind::static_column, sr.cells());
});
} else {
_read_context.cache().on_mispopulate();
}
}
inline
void cache_flat_mutation_reader::maybe_set_static_row_continuous() {
if (can_populate()) {
clogger.trace("csm {}: set static row continuous", fmt::ptr(this));
_snp->version()->partition().set_static_row_continuous(true);
} else {
_read_context.cache().on_mispopulate();
}
}
inline
bool cache_flat_mutation_reader::can_populate() const {
return _snp->at_latest_version() && _read_context.cache().phase_of(_read_context.key()) == _read_context.phase();
}
} // namespace cache
// pass a reference to ctx to cache_flat_mutation_reader
// keeping its ownership at caller's.
inline flat_mutation_reader make_cache_flat_mutation_reader(schema_ptr s,
dht::decorated_key dk,
query::clustering_key_filter_ranges crr,
row_cache& cache,
cache::read_context& ctx,
partition_snapshot_ptr snp)
{
return make_flat_mutation_reader<cache::cache_flat_mutation_reader>(
std::move(s), std::move(dk), std::move(crr), ctx, std::move(snp), cache);
}
// transfer ownership of ctx to cache_flat_mutation_reader
inline flat_mutation_reader make_cache_flat_mutation_reader(schema_ptr s,
dht::decorated_key dk,
query::clustering_key_filter_ranges crr,
row_cache& cache,
std::unique_ptr<cache::read_context> unique_ctx,
partition_snapshot_ptr snp)
{
return make_flat_mutation_reader<cache::cache_flat_mutation_reader>(
std::move(s), std::move(dk), std::move(crr), std::move(unique_ctx), std::move(snp), cache);
}