-
Notifications
You must be signed in to change notification settings - Fork 3
/
draft-ietf-cose-hpke.xml
1288 lines (1101 loc) · 56.3 KB
/
draft-ietf-cose-hpke.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?>
<!-- generated by https://github.com/cabo/kramdown-rfc version 1.7.17 (Ruby 3.0.2) -->
<!DOCTYPE rfc [
<!ENTITY nbsp " ">
<!ENTITY zwsp "​">
<!ENTITY nbhy "‑">
<!ENTITY wj "⁠">
]>
<rfc ipr="pre5378Trust200902" docName="draft-ietf-cose-hpke-09" category="std" consensus="true" tocInclude="true" sortRefs="true" symRefs="true">
<front>
<title abbrev="COSE HPKE">Use of Hybrid Public-Key Encryption (HPKE) with CBOR Object Signing and Encryption (COSE)</title>
<author initials="H." surname="Tschofenig" fullname="Hannes Tschofenig">
<organization abbrev="H-BRS">University of Applied Sciences Bonn-Rhein-Sieg</organization>
<address>
<postal>
<country>Germany</country>
</postal>
<email>[email protected]</email>
</address>
</author>
<author initials="O." surname="Steele" fullname="Orie Steele" role="editor">
<organization>Transmute</organization>
<address>
<postal>
<country>United States</country>
</postal>
<email>[email protected]</email>
</address>
</author>
<author initials="D." surname="Ajitomi" fullname="Daisuke Ajitomi">
<organization>bibital</organization>
<address>
<postal>
<country>Japan</country>
</postal>
<email>[email protected]</email>
</address>
</author>
<author initials="L." surname="Lundblade" fullname="Laurence Lundblade">
<organization>Security Theory LLC</organization>
<address>
<postal>
<country>United States</country>
</postal>
<email>[email protected]</email>
</address>
</author>
<date year="2024" month="July" day="09"/>
<area>Security</area>
<workgroup>COSE</workgroup>
<keyword>Internet-Draft</keyword>
<abstract>
<?line 62?>
<t>This specification defines hybrid public-key encryption (HPKE) for use with
CBOR Object Signing and Encryption (COSE). HPKE offers a variant of
public-key encryption of arbitrary-sized plaintexts for a recipient public key.</t>
<t>HPKE works for any combination of an asymmetric key encapsulation mechanism (KEM),
key derivation function (KDF), and authenticated encryption with
additional data (AEAD) function. Authentication for HPKE in COSE is
provided by COSE-native security mechanisms or by one of the authenticated
variants of HPKE.</t>
<t>This document defines the use of the HPKE with COSE.</t>
</abstract>
</front>
<middle>
<?line 76?>
<section anchor="introduction"><name>Introduction</name>
<t>Hybrid public-key encryption (HPKE) <xref target="RFC9180"/> is a scheme that
provides public key encryption of arbitrary-sized plaintexts given a
recipient's public key.</t>
<t>This document defines the use of the HPKE with COSE (<xref target="RFC9052"/>, <xref target="RFC9053"/>).</t>
</section>
<section anchor="conventions-and-terminology"><name>Conventions and Terminology</name>
<t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/>
when, and only when, they appear in all capitals, as shown here.</t>
<t>This specification uses the following abbreviations and terms:</t>
<t><list style="symbols">
<t>Content-encryption key (CEK), a term defined in CMS <xref target="RFC2630"/>.</t>
<t>Hybrid Public Key Encryption (HPKE) is defined in <xref target="RFC9180"/>.</t>
<t>pkR is the public key of the recipient, as defined in <xref target="RFC9180"/>.</t>
<t>skR is the private key of the recipient, as defined in <xref target="RFC9180"/>.</t>
<t>Key Encapsulation Mechanism (KEM), see <xref target="RFC9180"/>.</t>
<t>Key Derivation Function (KDF), see <xref target="RFC9180"/>.</t>
<t>Authenticated Encryption with Associated Data (AEAD), see <xref target="RFC9180"/>.</t>
<t>Additional Authenticated Data (AAD), see <xref target="RFC9180"/>.</t>
</list></t>
</section>
<section anchor="hpke-for-cose"><name>HPKE for COSE</name>
<section anchor="overview"><name>Overview</name>
<t>This specification supports two modes of HPKE in COSE, namely</t>
<t><list style="symbols">
<t>HPKE Direct Encryption mode, where HPKE is used to encrypt the plaintext. This mode can only be used with a single recipient. <xref target="one-layer"/> provides the details.</t>
<t>HPKE Key Encryption mode, where HPKE is used to encrypt a content encryption key (CEK) and the CEK is subsequently used to encrypt the plaintext. This mode supports multiple recipients. <xref target="two-layer"/>
provides the details.</t>
</list></t>
<t>In both cases a new COSE header parameter, called 'ek',
is used to convey the content of the enc structure defined in the HPKE
specification. "Enc" represents the serialized public key.</t>
<t>For use with HPKE the 'ek' header parameter MUST
be present in the unprotected header parameter and MUST contain
the encapsulated key, which is output of the HPKE KEM, and it
is a bstr.</t>
<section anchor="one-layer"><name>HPKE Direct Encryption Mode</name>
<t>With the HPKE Direct Encryption mode the information carried inside the
COSE_recipient structure is embedded inside the COSE_Encrypt0.</t>
<t>HPKE is used to directly encrypt the plaintext and the resulting ciphertext
is either included in the COSE_Encrypt0 or is detached. If a payload is
transported separately then it is called "detached content". A nil CBOR
object is placed in the location of the ciphertext. See Section 5
of <xref target="RFC9052"/> for a description of detached payloads.</t>
<t>The sender MUST set the alg parameter in the protected header, which
indicates the use of HPKE.</t>
<t>The sender MUST place the 'ek' (encapsulated key) parameter into the unprotected
header. Although the use of the 'kid' parameter in COSE_Encrypt0 is
discouraged by RFC 9052, this documents RECOMMENDS the use of the 'kid' parameter
(or other parameters) to explicitly identify the static recipient public key
used by the sender. If the COSE_Encrypt0 contains the 'kid' then the recipient may
use it to select the appropriate private key.</t>
<t>The HPKE specification describes an API and this API uses an "aad" parameter
as input. When COSE_Encrypt0 is used then there is no AEAD function executed
by COSE natively and HPKE offers this functionality.</t>
<t>The "aad" parameter provided to the HPKE API is constructed
as follows (and the design has been re-used from <xref target="RFC9052"/>):</t>
<figure><artwork><![CDATA[
Enc_structure = [
context : "Encrypt0",
protected : empty_or_serialized_map,
external_aad : bstr
]
empty_or_serialized_map = bstr .cbor header_map / bstr .size 0
]]></artwork></figure>
<t>The protected field in the Enc_structure contains the protected attributes
from the COSE_Encrypt0 structure at layer 0, encoded in a bstr type.</t>
<t><xref target="cddl-hpke-one-layer"/> shows the COSE_Encrypt0 CDDL structure.</t>
<figure title="CDDL used for the HPKE Direct Encryption Mode" anchor="cddl-hpke-one-layer"><artwork><![CDATA[
COSE_Encrypt0_Tagged = #6.16(COSE_Encrypt0)
; Layer 0
COSE_Encrypt0 = [
Headers,
ciphertext : bstr / nil,
]
]]></artwork></figure>
<t>The COSE_Encrypt0 MAY be tagged or untagged.</t>
<t>An example is shown in <xref target="one-layer-example"/>.</t>
</section>
<section anchor="two-layer"><name>HPKE Key Encryption Mode</name>
<t>With the HPKE Key Encryption mode information is conveyed in the COSE_recipient
structure, i.e. one COSE_recipient structure per recipient.</t>
<t>In this approach the following layers are involved:</t>
<t><list style="symbols">
<t>Layer 0 (corresponding to the COSE_Encrypt structure) contains the content (plaintext)
encrypted with the CEK. This ciphertext may be detached, and if not detached, then
it is included in the COSE_Encrypt structure.</t>
<t>Layer 1 (corresponding to a recipient structure) contains parameters needed for
HPKE to generate a shared secret used to encrypt the CEK. This layer conveys the
encrypted CEK in the encCEK structure. The protected header MUST contain the HPKE
alg parameter and the unprotected header MUST contain the 'ek' parameter.
The unprotected header MAY contain the kid parameter to identify the static recipient
public key the sender has been using with HPKE.</t>
</list></t>
<t>This two-layer structure is used to encrypt content that can also be shared with
multiple parties at the expense of a single additional encryption operation.
As stated above, the specification uses a CEK to encrypt the content at layer 0.</t>
<section anchor="recipient-encryption"><name>Recipient Encryption</name>
<t>This describes the Recipient_structure.
It serves instead of COSE_KDF_Context for COSE-HPKE recipients (and possibly other COSE algorithms defined outside this document).
It MUST be used for COSE-HPKE recipients as it provides the protection for recipient protected headers.
It is patterned after the Enc_structure in <xref target="RFC9052"/>, but is specifically for a COSE_recipient, never a COSE_Encrypt.
The COSE_KDF_Context MUST NOT be used in COSE-HPKE.</t>
<figure><artwork><![CDATA[
Recipient_structure = [
context: "Recipient",
next_layer_alg: int/tstr,
recipient_protected_header: empty_or_serialize_map,
recipient_aad: bstr
]
]]></artwork></figure>
<t><list style="symbols">
<t>"next_layer_alg" is the algorithm ID of the COSE layer for which the COSE_recipient is encrypting a key.
It is the algorithm that the key MUST be used with.
This value MUST match the alg parameter in the next lower COSE layer.
(This serves the same purpose as the alg ID in the COSE_KDF_Context.
It also mitigates attacks where a person-in-the-middle changes the following layer algorithm from an AEAD algorithm to one that is not foiling the protection of the following layer headers).</t>
<t>"recipient_protected_header" contains the protected headers from the COSE_recipient CBOR-encoded deterministically with the "Core Deterministic Encoding Requirements", specified in Section 4.2.1 of RFC 8949 <xref target="STD94"/>.</t>
<t>"recipient_aad" contains any additional context the application wishes to protect.
If none, it is a zero-length string.
This is distinct from the external_aad for the whole COSE encrypt.
It is per-recipient.
Since it is not a header, it may be secret data that is not transmitted.
It provides a means to convey many of the fields in COSE_KDF_Context.</t>
</list></t>
</section>
<section anchor="cose-hpke-recipient-construction"><name>COSE-HPKE Recipient Construction</name>
<t>This is the procedure for creating a COSE_recipient for COSE-HPKE.</t>
<t>When a COSE_recipeint is constructed for a COSE-HPKE recipient, this is given as the "aad" parameter to the HPKE Seal() API.
The "info" parameter to HPKE_Seal is not used with COSE_HPKE.</t>
<t>The creation of the COSE_recipient is as follows:</t>
<t><list style="numbers" type="1">
<t>Prepare a Recipient_structure</t>
<t>Obtain the key To used use by the next lowest layer</t>
<t>Pass in the following parameters to HPKE Seal API
<list style="numbers" type="1">
<t>Public key of recipient for "pKR"</t>
<t>Empty string for "info"</t>
<t>CBOR-encoded Recipient_structure for "aad"</t>
<t>The key for next lowest COSE layer for "pt"</t>
</list></t>
<t>The following are returned from the HPKE Seal API
<list style="numbers" type="1">
<t>The "enc" is placed in the "ek" header of the COSE_recipient</t>
<t>The "ct" is placed in the "ciphertext" field of the COSE_recipient</t>
</list></t>
</list></t>
<t>The decoding and decryption of a COSE_recipient is as follows:</t>
<t><list style="numbers" type="1">
<t>Prepare a Recipient_structure</t>
<t>Pass in the following parameters to HPKE Open API
<list style="numbers" type="1">
<t>The "ek" header for "enc"</t>
<t>Secret key for recipient for "sKR"</t>
<t>Empty string for "info"</t>
<t>CBOR-encoded Recipient_structure for "aad"</t>
<t>The cipher text from the COSE_recipient as "ct"</t>
</list></t>
<t>What is returned from HPKE Open API is the key for the next lowest COSE layer</t>
</list></t>
<t>It is not necessary to fill in recipient_aad as HPKE itself covers the attacks that recipient_aad (and COSE_KDF_Context (and SP800-56A)) are used to mitigate.
COSE-HPKE use cases may use it for any purpose they wish, but it should generally be for small identifiers, context or secrets, not to protect bulk external data.
Bulk external data should be protected at layer 0 with external_aad.</t>
<t>The COSE_recipient structure, shown in <xref target="cddl-hpke"/>, is repeated for each
recipient.</t>
<figure title="CDDL used for the HPKE Key Encryption Mode" anchor="cddl-hpke"><artwork><![CDATA[
COSE_Encrypt_Tagged = #6.96(COSE_Encrypt)
/ Layer 0 /
COSE_Encrypt = [
Headers,
ciphertext : bstr / nil,
recipients : + COSE_recipient
]
/ Layer 1 /
COSE_recipient = [
protected : bstr .cbor header_map,
unprotected : header_map,
encCEK : bstr,
]
header_map = {
Generic_Headers,
* label => values,
}
]]></artwork></figure>
<t>The COSE_Encrypt MAY be tagged or untagged.</t>
<t>When encrypting the content at layer 0 then the instructions in
Section 5.3 of <xref target="RFC9052"/> MUST to be followed, which includes the
calculation of the authenticated data strcture.</t>
<t>An example is shown in <xref target="two-layer-example"/>.</t>
</section>
</section>
</section>
<section anchor="key-representation"><name>Key Representation</name>
<t>The COSE_Key with the existing key types can be used to represent KEM private
or public keys. When using a COSE_Key for COSE-HPKE, the following checks are made:</t>
<t><list style="symbols">
<t>The "kty" field MUST be present, and it MUST be one of the key types for HPKE KEM.</t>
<t>If the "kty" field is "OKP" or "EC2", the "crv" field MUST be present
and it MUST be a curve for HPKE KEM.</t>
<t>If the "alg" field is present, it MUST be one of the supported COSE-HPKE "alg" values
and the key type of its KEM MUST match the "kty" field.
If the "kty" field is "OKP" or "EC2", the curve of the KEM MUST match the "crv" field.
The valid combinations of the "alg", "kty" and "crv" are shown in <xref target="ciphersuite-kty-crv"/>.</t>
<t>If the "key_ops" field is present, it MUST include only "derive bits" for the private key
and MUST be empty for the public key.</t>
</list></t>
<t>Examples of the COSE_Key for COSE-HPKE are shown in <xref target="key-representation-example"/>.</t>
</section>
</section>
<section anchor="ciphersuite-registration"><name>Ciphersuite Registration</name>
<t>A ciphersuite is a group of algorithms, often sharing component algorithms
such as hash functions, targeting a security level.
An HPKE ciphersuite, is composed of the following choices:</t>
<t><list style="symbols">
<t>HPKE Mode</t>
<t>KEM Algorithm</t>
<t>KDF Algorithm</t>
<t>AEAD Algorithm</t>
</list></t>
<t>The "KEM", "KDF", and "AEAD" values are chosen from the HPKE IANA
registry <xref target="HPKE-IANA"/>.</t>
<t>For readability the algorithm ciphersuites labels are built according
to the following scheme:</t>
<figure><artwork><![CDATA[
HPKE-<Version>-<Mode>-<KEM>-<KDF>-<AEAD>
]]></artwork></figure>
<t>The "Mode" indicator may be populated with the following values from
Table 1 of <xref target="RFC9180"/>:</t>
<t><list style="symbols">
<t>"Base" refers to "mode_base" described in Section 5.1.1 of <xref target="RFC9180"/>,
which only enables encryption to the holder of a given KEM private key.</t>
<t>"PSK" refers to "mode_psk", described in Section 5.1.2 of <xref target="RFC9180"/>,
which authenticates using a pre-shared key.</t>
<t>"Auth" refers to "mode_auth", described in Section 5.1.3 of <xref target="RFC9180"/>,
which authenticates using an asymmetric key.</t>
<t>"Auth_Psk" refers to "mode_auth_psk", described in Section 5.1.4 of <xref target="RFC9180"/>,
which authenticates using both a PSK and an asymmetric key.</t>
</list></t>
<t>For a list of ciphersuite registrations, please see <xref target="IANA"/>. The following
table summarizes the relationship between the ciphersuites registered in this
document, which all use the "Base" mode and the values registered in the
HPKE IANA registry <xref target="HPKE-IANA"/>.</t>
<figure><artwork><![CDATA[
+--------------------------------------------------+------------------+
| COSE-HPKE | HPKE |
| Cipher Suite Label | KEM | KDF | AEAD |
+--------------------------------------------------+-----+-----+------+
| HPKE-Base-P256-SHA256-A128GCM |0x10 | 0x1 | 0x1 |
| HPKE-Base-P384-SHA384-AS256GCM |0x11 | 0x2 | 0x2 |
| HPKE-Base-P521-SHA512-AS256GCM |0x12 | 0x3 | 0x2 |
| HPKE-Base-X25519-SHA256-A128GCM |0x20 | 0x1 | 0x1 |
| HPKE-Base-X25519-SHA256-ChaCha20Poly1305 |0x20 | 0x1 | 0x3 |
| HPKE-Base-X448-SHA512-AS256GCM |0x21 | 0x3 | 0x2 |
| HPKE-Base-X448-SHA512-ChaCha20Poly1305 |0x21 | 0x3 | 0x3 |
+--------------------------------------------------+-----+-----+------+
]]></artwork></figure>
<t>As the list indicates, the ciphersuite labels have been abbreviated at least
to some extend to maintain the tradeoff between readability and length.</t>
<t>The ciphersuite list above is a minimal starting point. Additional
ciphersuites can be registered into the already existing registry.
For example, once post-quantum cryptographic algorithms have been standardized
it might be beneficial to register ciphersuites for use with COSE-HPKE.
Additionally, ciphersuites utilizing the compact encoding of the public keys,
as defined in <xref target="I-D.irtf-cfrg-dnhpke"/>, may be standardized for use in
constrained environments.</t>
<t>As a guideline for ciphersuite submissions to the IANA CoSE algorithm
registry, the designated experts must only register combinations of
(KEM, KDF, AEAD) triple that consitute valid combinations for use with
HPKE, the KDF used should (if possible) match one internally used by the
KEM, and components should not be mixed between global and national standards.</t>
<section anchor="cosekeys-for-cose-hpke-ciphersuites"><name>COSE_Keys for COSE-HPKE Ciphersuites</name>
<t>The COSE-HPKE ciphersuite uniquely determines the type of KEM for which a COSE_Key is used.
The following mapping table shows the valid combinations
of the COSE-HPKE ciphersuite, COSE_Key type and its curve.</t>
<figure title="COSE_Key Types and Curves for COSE-HPKE Ciphersuites" anchor="ciphersuite-kty-crv"><artwork><![CDATA[
+---------------------+--------------+
| COSE-HPKE | COSE_Key |
| Ciphersuite Label | kty | crv |
+---------------------+-----+--------+
| HPKE-Base-P256-\* | EC2 | P-256 |
| HPKE-Base-P384-\* | EC2 | P-384 |
| HPKE-Base-P521-\* | EC2 | P-521 |
| HPKE-Base-X25519-\* | OKP | X25519 |
| HPKE-Base-X448-\* | OKP | X448 |
| HPKE-Base-CP256-\* | EC2 | P-256 |
| HPKE-Base-CP384-\* | EC2 | P-384 |
| HPKE-Base-CP521-\* | EC2 | P-521 |
+---------------------+-----+--------+
]]></artwork></figure>
</section>
</section>
<section anchor="examples"><name>Examples</name>
<t>This section provides a set of examples that shows all COSE message types
(COSE_Encrypt0, COSE_Encrypt and COSE_MAC) to which the COSE-HPKE can be
applied, and also provides some examples of key representation for HPKE KEM.</t>
<t>Each example of the COSE message includes the following information
that can be used to check the interoperability of COSE-HPKE implementations:</t>
<t><list style="symbols">
<t>plaintext: Original data of the encrypted payload.</t>
<t>external_aad: Externally supplied AAD.</t>
<t>skR: A recipient private key.</t>
<t>skE: An ephemeral sender private key paired with the encapsulated key.</t>
</list></t>
<section anchor="one-layer-example"><name>HPKE Direct Encryption Mode</name>
<t>This example assumes that a sender wants to communicate an
encrypted payload to a single recipient in the most efficient way.</t>
<t>An example of the HPKE Direct Encryption Mode is
shown in <xref target="hpke-example-one"/>. Line breaks and comments have been inserted
for better readability.</t>
<t>This example uses the following:</t>
<t><list style="symbols">
<t>alg: HPKE-Base-P256-SHA256-A128GCM</t>
<t>plaintext: "This is the content."</t>
<t>external_aad: "COSE-HPKE app"</t>
<t>skR: h'57c92077664146e876760c9520d054aa93c3afb04e306705db6090308507b4d3'</t>
<t>skE: h'42dd125eefc409c3b57366e721a40043fb5a58e346d51c133128a77237160218'</t>
</list></t>
<figure title="COSE_Encrypt0 Example for HPKE" anchor="hpke-example-one"><artwork><![CDATA[
16([
/ alg = HPKE-Base-P256-SHA256-A128GCM (Assumed: 35) /
h'a1011823',
{
/ kid /
4: h'3031',
/ ek /
-4: h'045df24272faf43849530db6be01f42708b3c3a9
df8e268513f0a996ed09ba7840894a3fb946cb28
23f609c59463093d8815a7400233b75ca8ecb177
54d241973e',
},
/ encrypted plaintext /
h'35aa3d98739289b83751125abe44e3b977e4b9abbf2c8cfaade
b15f7681eef76df88f096',
])
]]></artwork></figure>
</section>
<section anchor="two-layer-example"><name>HPKE Key Encryption Mode</name>
<t>In this example we assume that a sender wants to transmit a
payload to two recipients using the HPKE Key Encryption mode.
Note that it is possible to send two single-layer payloads,
although it will be less efficient.</t>
<section anchor="coseencrypt"><name>COSE_Encrypt</name>
<t>An example of the COSE_Encrypt structure using the HPKE scheme is
shown in <xref target="hpke-example-cose-encrypt"/>. Line breaks and comments have been
inserted for better readability.</t>
<t>This example uses the following:</t>
<t>TODO: recompute this for Recipient_structure</t>
<t><list style="symbols">
<t>Encryption alg: AES-128-GCM</t>
<t>plaintext: "This is the content."</t>
<t>detatched ciphertext: h'cc168c4e148c52a83010a75250935a47ccb8682deebcef8fce5d60c161e849f53a2dc664'</t>
<t>kid:"01"
<list style="symbols">
<t>alg: HPKE-Base-P256-SHA256-A128GCM</t>
<t>external_aad: "COSE-HPKE app"</t>
<t>skR: h'57c92077664146e876760c9520d054aa93c3afb04e306705db6090308507b4d3'</t>
<t>skE: h'97ad883f949f4cdcb1301b9446950efd4eb519e16c4a3d78304eec832692f9f6'</t>
</list></t>
<t>kid:"02"
<list style="symbols">
<t>alg: HPKE-Base-X25519-SHA256-CHACHA20POLY1305</t>
<t>external_aad: "COSE-HPKE app"</t>
<t>skR: h'bec275a17e4d362d0819dc0695d89a73be6bf94b66ab726ae0b1afe3c43f41ce'</t>
<t>skE: h'b8ed3f4df56c230e36fa6620a47f24d08856d242ea547c5521ff7bd69af8fd6f'</t>
</list></t>
</list></t>
<figure title="COSE_Encrypt Example for HPKE" anchor="hpke-example-cose-encrypt"><artwork><![CDATA[
96_0([
/ alg = AES-128-GCM (1) /
h'a10101',
{
/ iv /
5: h'b3fb95dde18c6f90a9f0ae55',
},
/ detached ciphertext /
null,
[
[
/ alg = HPKE-Base-P256-SHA256-A128GCM (Assumed: 35) /
h'a1011823',
{
/ kid /
4: h'3031',
/ ek /
-4: h'04d97b79486fe2e7b98fb1bd43
c4faee316ff38d28609a1cf568
40a809298a91e601f1cc0c2ba4
6cb67b41f4651b769cafd9df78
e58aa7f5771291bd4f0f420ba6',
},
/ ciphertext containing encrypted CEK /
h'24450f54ae93375351467d17aa7a795cfede2
c03eced1ad21fcb7e7c2fe64397',
],
[
/ alg = HPKE-Base-X25519-SHA256-CHACHA20POLY1305 (Assumed: 42) /
h'a101182a',
{
/ kid /
4: h'3032',
/ ek /
-4: h'd1afbdc95b0e735676f6bca34f
be50f2822259ac09bfc3c500f1
4a05de9b2833',
},
/ ciphertext containing encrypted CEK /
h'079b443ec6dfcda6a5f8748aff3875146a8ed
40359e1279b545166385d8d9b59',
],
],
])
]]></artwork></figure>
<t>To offer authentication of the sender the payload in <xref target="hpke-example-cose-encrypt"/>
is signed with a COSE_Sign1 wrapper, which is outlined in <xref target="hpke-example-sign"/>.
The payload in <xref target="hpke-example-sign"/> is meant to contain the content of
<xref target="hpke-example-cose-encrypt"/>.</t>
<figure title="COSE_Encrypt Example for HPKE" anchor="hpke-example-sign"><artwork><![CDATA[
18(
[
/ protected / h'a10126' / {
\ alg \ 1:-7 \ ECDSA 256 \
} / ,
/ unprotected / {
/ kid / 4:'[email protected]'
},
/ payload / h'AA19...B80C',
/ signature / h'E3B8...25B8'
]
)
]]></artwork></figure>
</section>
<section anchor="cosemac"><name>COSE_MAC</name>
<t>An example of the COSE_MAC structure using the HPKE scheme is
shown in <xref target="hpke-example-cose-mac"/>.</t>
<t>This example uses the following:</t>
<t><list style="symbols">
<t>MAC alg: HMAC 256/256</t>
<t>payload: "This is the content."</t>
<t>kid:"01"
<list style="symbols">
<t>alg: HPKE-Base-P256-SHA256-A128GCM</t>
<t>external_aad: "COSE-HPKE app"</t>
<t>skR: h'57c92077664146e876760c9520d054aa93c3afb04e306705db6090308507b4d3'</t>
<t>skE: h'e5dd9472b5807636c95be0ba2575020ba91cbb3561b52be141da89678c664307'</t>
</list></t>
<t>kid:"02"
<list style="symbols">
<t>alg: HPKE-Base-X25519-SHA256-CHACHA20POLY1305</t>
<t>external_aad: "COSE-HPKE app"</t>
<t>skR: h'bec275a17e4d362d0819dc0695d89a73be6bf94b66ab726ae0b1afe3c43f41ce'</t>
<t>skE: h'78a49d7af71b5244498e943f361aa0250184afc48b8098a68ae97ccd2cd7e56f'</t>
</list></t>
</list></t>
<figure title="COSE_MAC Example for HPKE" anchor="hpke-example-cose-mac"><artwork><![CDATA[
97_0([
/ alg = HMAC 256/256 (5) /
h'a10105',
{},
/ payload = 'This is the content.' /
h'546869732069732074686520636f6e74656e742e',
/ tag /
h'5cdcf6055fcbdb53b4001d8fb88b2a46b200ed28e1ed77e16ddf43fb3cac3a98',
[
[
/ alg = HPKE-Base-P256-SHA256-A128GCM (Assumed: 35) /
h'a1011823',
{
/ kid = '01' /
4: h'3031',
/ ek /
-4: h'043ac21632e45e1fbd733f002a
621aa4f3d94737adc395d5a7cb
6e9554bd1ad273aec991493786
d72616d9759bf8526e6e20c1ed
c41ba5739f2b2e441781aa0eb4',
},
/ ciphertext containing encrypted MAC key /
h'5cee2b4235a7ff695164f7a8d1e79ccf3ca3d
e8b22f3592626020a95b2a8d3fb4d7aa7fe37
432426ee70073a368f29d1',
],
[
/ alg = HPKE-Base-X25519-SHA256-CHACHA20POLY1305 (Assumed: 42) /
h'a101182a',
{
/ kid = '02' /
4: h'3032',
/ ek /
-4: h'02cffacc60def3bb3d0a1c3661
227c9de8dc2b1d3939dd2c07d4
49ebb0bba324',
},
/ ciphertext containing encrypted MAC key /
h'3f5b8b60271d5234dbea554dc1461d0239e9f
4589f6415e8563b061dbcb37795a616111b78
2b4c589b534309327ffadc',
],
],
])
]]></artwork></figure>
</section>
</section>
<section anchor="key-representation-example"><name>Key Representation</name>
<t>Examples of private and public KEM key representation are shown below.</t>
<section anchor="kem-public-key-for-hpke-base-p256-sha256-a128gcm"><name>KEM Public Key for HPKE-Base-P256-SHA256-A128GCM</name>
<figure title="Key Representation Example for HPKE-Base-P256-SHA256-A128GCM" anchor="hpke-example-key-1"><artwork><![CDATA[
{
/ kty = 'EC2' /
1: 2,
/ kid = '01' /
2: h'3031',
/ alg = HPKE-Base-P256-SHA256-A128GCM (Assumed: 35) /
3: 35,
/ crv = 'P-256' /
-1: 1,
/ x /
-2: h'65eda5a12577c2bae829437fe338701a10aaa375e1bb5b5de108de439c08551d',
/ y /
-3: h'1e52ed75701163f7f9e40ddf9f341b3dc9ba860af7e0ca7ca7e9eecd0084d19c'
}
]]></artwork></figure>
</section>
<section anchor="kem-private-key-for-hpke-base-p256-sha256-a128gcm"><name>KEM Private Key for HPKE-Base-P256-SHA256-A128GCM</name>
<figure title="Key Representation Example for HPKE-Base-P256-SHA256-A128GCM" anchor="hpke-example-key-2"><artwork><![CDATA[
{
/ kty = 'EC2' /
1: 2,
/ kid = '01' /
2: h'3031',
/ alg = HPKE-Base-P256-SHA256-A128GCM (Assumed: 35) /
3: 35,
/ key_ops = ['derive_bits'] /
4: [8],
/ crv = 'P-256' /
-1: 1,
/ x /
-2: h'bac5b11cad8f99f9c72b05cf4b9e26d244dc189f745228255a219a86d6a09eff',
/ y /
-3: h'20138bf82dc1b6d562be0fa54ab7804a3a64b6d72ccfed6b6fb6ed28bbfc117e',
/ d /
-4: h'57c92077664146e876760c9520d054aa93c3afb04e306705db6090308507b4d3',
}
]]></artwork></figure>
</section>
<section anchor="kem-public-key-for-hpke-base-x25519-sha256-chacha20poly1305"><name>KEM Public Key for HPKE-Base-X25519-SHA256-CHACHA20POLY1305</name>
<figure title="Key Representation Example for HPKE-Base-X25519-SHA256-CHACHA20POLY1305" anchor="hpke-example-key-3"><artwork><![CDATA[
{
/ kty = 'OKP' /
1: 1,
/ kid = '11' /
2: h'3131',
/ alg = HPKE-Base-X25519-SHA256-CHACHA20POLY1305 (Assumed: 42) /
3: 42,
/ crv = 'X25519' /
-1: 4,
/ x /
-2: h'cb7c09ab7b973c77a808ee05b9bbd373b55c06eaa9bd4ad2bd4e9931b1c34c22',
}
]]></artwork></figure>
</section>
</section>
</section>
<section anchor="sec-cons"><name>Security Considerations</name>
<t>This specification is based on HPKE and the security considerations of
<xref target="RFC9180"/> are therefore applicable also to this specification.</t>
<t>HPKE assumes the sender is in possession of the public key of the recipient and
HPKE COSE makes the same assumptions. Hence, some form of public key distribution
mechanism is assumed to exist but outside the scope of this document.</t>
<t>HPKE relies on a source of randomness to be available on the device. Additionally,
with the two layer structure the CEK is randomly generated and it MUST be
ensured that the guidelines in <xref target="RFC8937"/> for random number generations are followed.</t>
<t>HPKE in Base mode does not offer authentication as part of the HPKE KEM. In this
case COSE constructs like COSE_Sign, COSE_Sign1, COSE_MAC, or COSE_MAC0 can be
used to add authentication. HPKE also offers modes that offer authentication.</t>
<t>If COSE_Encrypt or COSE_Encrypt0 is used with a detached ciphertext then the
subsequently applied integrity protection via COSE_Sign, COSE_Sign1, COSE_MAC,
or COSE_MAC0 does not cover this detached ciphertext. Implementers MUST ensure
that the detached ciphertext also experiences integrity protection. This is, for
example, the case when an AEAD cipher is used to produce the detached ciphertext
but may not be guaranteed by non-AEAD ciphers.</t>
</section>
<section anchor="IANA"><name>IANA Considerations</name>
<t>This document requests IANA to add new values to the 'COSE Algorithms' and to
the 'COSE Header Parameters' registries.</t>
<section anchor="cose-algorithms-registry"><name>COSE Algorithms Registry</name>
<t><list style="symbols">
<t>Name: HPKE-Base-P256-SHA256-A128GCM</t>
<t>Value: TBD1 (Assumed: 35)</t>
<t>Description: Cipher suite for COSE-HPKE in Base Mode that uses the DHKEM(P-256, HKDF-SHA256) KEM, the HKDF-SHA256 KDF and the AES-128-GCM AEAD.</t>
<t>Capabilities: [kty]</t>
<t>Change Controller: IESG</t>
<t>Reference: [[TBD: This RFC]]</t>
<t>Recommended: Yes</t>
<t>Name: HPKE-Base-P384-SHA384-AS256GCM</t>
<t>Value: TBD3 (Assumed: 37)</t>
<t>Description: Cipher suite for COSE-HPKE in Base Mode that uses the DHKEM(P-384, HKDF-SHA384) KEM, the HKDF-SHA384 KDF, and the AES-256-GCM AEAD.</t>
<t>Capabilities: [kty]</t>
<t>Change Controller: IESG</t>
<t>Reference: [[TBD: This RFC]]</t>
<t>Recommended: Yes</t>
<t>Name: HPKE-Base-P521-SHA512-AS256GCM</t>
<t>Value: TBD5 (Assumed: 39)</t>
<t>Description: Cipher suite for COSE-HPKE in Base Mode that uses the DHKEM(P-521, HKDF-SHA512) KEM, the HKDF-SHA512 KDF, and the AES-256-GCM AEAD.</t>
<t>Capabilities: [kty]</t>
<t>Change Controller: IESG</t>
<t>Reference: [[TBD: This RFC]]</t>
<t>Recommended: Yes</t>
<t>Name: HPKE-Base-X25519-SHA256-A128GCM</t>
<t>Value: TBD7 (Assumed: 41)</t>
<t>Description: Cipher suite for COSE-HPKE in Base Mode that uses the DHKEM(X25519, HKDF-SHA256) KEM, the HKDF-SHA256 KDF, and the AES-128-GCM AEAD.</t>
<t>Capabilities: [kty]</t>
<t>Change Controller: IESG</t>
<t>Reference: [[TBD: This RFC]]</t>
<t>Recommended: Yes</t>
<t>Name: HPKE-Base-X25519-SHA256-ChaCha20Poly1305</t>
<t>Value: TBD8 (Assumed: 42)</t>
<t>Description: Cipher suite for COSE-HPKE in Base Mode that uses the DHKEM(X25519, HKDF-SHA256) KEM, the HKDF-SHA256 KDF, and the ChaCha20Poly1305 AEAD.</t>
<t>Capabilities: [kty]</t>
<t>Change Controller: IESG</t>
<t>Reference: [[TBD: This RFC]]</t>
<t>Recommended: Yes</t>
<t>Name: HPKE-Base-X448-SHA512-AS256GCM</t>
<t>Value: TBD9 (Assumed: 43)</t>
<t>Description: Cipher suite for COSE-HPKE in Base Mode that uses the DHKEM(X448, HKDF-SHA512) KEM, the HKDF-SHA512 KDF, and the AES-256-GCM AEAD.</t>
<t>Capabilities: [kty]</t>
<t>Change Controller: IESG</t>
<t>Reference: [[TBD: This RFC]]</t>
<t>Recommended: Yes</t>
<t>Name: HPKE-Base-X448-SHA512-ChaCha20Poly1305</t>
<t>Value: TBD10 (Assumed: 44)</t>
<t>Description: Cipher suite for COSE-HPKE in Base Mode that uses the DHKEM(X448, HKDF-SHA512) KEM, the HKDF-SHA512 KDF, and the ChaCha20Poly1305 AEAD.</t>
<t>Capabilities: [kty]</t>
<t>Change Controller: IESG</t>
<t>Reference: [[TBD: This RFC]]</t>
<t>Recommended: Yes</t>
</list></t>
</section>
<section anchor="cose-header-parameters"><name>COSE Header Parameters</name>
<t><list style="symbols">
<t>Name: ek</t>
<t>Label: TBDX (Assumed: -4)</t>
<t>Value type: bstr</t>
<t>Value Registry: N/A</t>
<t>Description: HPKE encapsulated key</t>
<t>Reference: [[This specification]]</t>
</list></t>
</section>
</section>
</middle>
<back>
<references title='Normative References' anchor="sec-normative-references">
<reference anchor="RFC2119">
<front>
<title>Key words for use in RFCs to Indicate Requirement Levels</title>
<author fullname="S. Bradner" initials="S." surname="Bradner"/>
<date month="March" year="1997"/>
<abstract>
<t>In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
</abstract>
</front>
<seriesInfo name="BCP" value="14"/>
<seriesInfo name="RFC" value="2119"/>
<seriesInfo name="DOI" value="10.17487/RFC2119"/>
</reference>
<reference anchor="RFC8174">
<front>
<title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title>
<author fullname="B. Leiba" initials="B." surname="Leiba"/>
<date month="May" year="2017"/>
<abstract>
<t>RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t>
</abstract>
</front>
<seriesInfo name="BCP" value="14"/>
<seriesInfo name="RFC" value="8174"/>
<seriesInfo name="DOI" value="10.17487/RFC8174"/>
</reference>
<reference anchor="RFC9180">
<front>
<title>Hybrid Public Key Encryption</title>
<author fullname="R. Barnes" initials="R." surname="Barnes"/>
<author fullname="K. Bhargavan" initials="K." surname="Bhargavan"/>
<author fullname="B. Lipp" initials="B." surname="Lipp"/>
<author fullname="C. Wood" initials="C." surname="Wood"/>
<date month="February" year="2022"/>
<abstract>
<t>This document describes a scheme for hybrid public key encryption (HPKE). This scheme provides a variant of public key encryption of arbitrary-sized plaintexts for a recipient public key. It also includes three authenticated variants, including one that authenticates possession of a pre-shared key and two optional ones that authenticate possession of a key encapsulation mechanism (KEM) private key. HPKE works for any combination of an asymmetric KEM, key derivation function (KDF), and authenticated encryption with additional data (AEAD) encryption function. Some authenticated variants may not be supported by all KEMs. We provide instantiations of the scheme using widely used and efficient primitives, such as Elliptic Curve Diffie-Hellman (ECDH) key agreement, HMAC-based key derivation function (HKDF), and SHA2.</t>
<t>This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="9180"/>
<seriesInfo name="DOI" value="10.17487/RFC9180"/>
</reference>
<reference anchor="RFC9052">
<front>
<title>CBOR Object Signing and Encryption (COSE): Structures and Process</title>
<author fullname="J. Schaad" initials="J." surname="Schaad"/>
<date month="August" year="2022"/>
<abstract>
<t>Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need to be able to define basic security services for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR.</t>
<t>This document, along with RFC 9053, obsoletes RFC 8152.</t>
</abstract>
</front>
<seriesInfo name="STD" value="96"/>
<seriesInfo name="RFC" value="9052"/>
<seriesInfo name="DOI" value="10.17487/RFC9052"/>
</reference>
<reference anchor="RFC9053">
<front>
<title>CBOR Object Signing and Encryption (COSE): Initial Algorithms</title>
<author fullname="J. Schaad" initials="J." surname="Schaad"/>
<date month="August" year="2022"/>
<abstract>
<t>Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need to be able to define basic security services for this data format. This document defines a set of algorithms that can be used with the CBOR Object Signing and Encryption (COSE) protocol (RFC 9052).</t>
<t>This document, along with RFC 9052, obsoletes RFC 8152.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="9053"/>
<seriesInfo name="DOI" value="10.17487/RFC9053"/>
</reference>
<referencegroup anchor="STD94" target="https://www.rfc-editor.org/info/std94">
<reference anchor="RFC8949" target="https://www.rfc-editor.org/info/rfc8949">
<front>
<title>Concise Binary Object Representation (CBOR)</title>
<author fullname="C. Bormann" initials="C." surname="Bormann"/>
<author fullname="P. Hoffman" initials="P." surname="Hoffman"/>
<date month="December" year="2020"/>
<abstract>
<t>The Concise Binary Object Representation (CBOR) is a data format whose design goals include the possibility of extremely small code size, fairly small message size, and extensibility without the need for version negotiation. These design goals make it different from earlier binary serializations such as ASN.1 and MessagePack.</t>
<t>This document obsoletes RFC 7049, providing editorial improvements, new details, and errata fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create a new version of the format.</t>
</abstract>
</front>
<seriesInfo name="STD" value="94"/>
<seriesInfo name="RFC" value="8949"/>
<seriesInfo name="DOI" value="10.17487/RFC8949"/>
</reference>
</referencegroup>
</references>
<references title='Informative References' anchor="sec-informative-references">
<reference anchor="RFC8937">
<front>
<title>Randomness Improvements for Security Protocols</title>
<author fullname="C. Cremers" initials="C." surname="Cremers"/>
<author fullname="L. Garratt" initials="L." surname="Garratt"/>
<author fullname="S. Smyshlyaev" initials="S." surname="Smyshlyaev"/>
<author fullname="N. Sullivan" initials="N." surname="Sullivan"/>
<author fullname="C. Wood" initials="C." surname="Wood"/>
<date month="October" year="2020"/>
<abstract>
<t>Randomness is a crucial ingredient for Transport Layer Security (TLS) and related security protocols. Weak or predictable "cryptographically secure" pseudorandom number generators (CSPRNGs) can be abused or exploited for malicious purposes. An initial entropy source that seeds a CSPRNG might be weak or broken as well, which can also lead to critical and systemic security problems. This document describes a way for security protocol implementations to augment their CSPRNGs using long-term private keys. This improves randomness from broken or otherwise subverted CSPRNGs.</t>
<t>This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="8937"/>
<seriesInfo name="DOI" value="10.17487/RFC8937"/>
</reference>
<reference anchor="RFC2630">
<front>
<title>Cryptographic Message Syntax</title>
<author fullname="R. Housley" initials="R." surname="Housley"/>
<date month="June" year="1999"/>
<abstract>
<t>This document describes the Cryptographic Message Syntax. This syntax is used to digitally sign, digest, authenticate, or encrypt arbitrary messages. [STANDARDS-TRACK]</t>
</abstract>
</front>
<seriesInfo name="RFC" value="2630"/>
<seriesInfo name="DOI" value="10.17487/RFC2630"/>