This repository has been archived by the owner on Jul 19, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
136 lines (109 loc) · 4.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# libraries
from keras import callbacks
import random
from keras.optimizers import SGD
from keras.layers import Dense, Dropout
from keras.models import load_model
from keras.models import Sequential
import numpy as np
import pickle
import json
import os
import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
# download punkt and wordnet
# punkt is the pre-trained tokenizer we will use for the Enligsh language
nltk.download("punkt")
nltk.download("wordnet")
# we will be ignoring ? and ! because they are redundant as we are not yet interpreting intented tone (who do you think I am. Mr Musk!? Hell no!)
# init
words = []
classes = []
documents = []
ignore_words = []
dirname = os.path.dirname(__file__)
# quick explanation - my directories are screwed so i hada to specify double the trouble
data_filename = os.path.join(dirname, 'intents.json')
data_file = open(data_filename).read()
intents = json.loads(data_file)
# tokenizing time
for intent in intents["intents"]:
for pattern in intent["patterns"]:
# take each word and tokenize it
w = nltk.word_tokenize(pattern)
words.extend(w)
# adding documents
documents.append((w, intent["tag"]))
# adding classes to our class list
if intent["tag"] not in classes:
classes.append(intent["tag"])
# lemmatimzing time
# dump in pickle file
words = [lemmatizer.lemmatize(w.lower())
for w in words if w not in ignore_words]
words = sorted(list(set(words)))
classes = sorted(list(set(classes)))
print(len(documents), "documents")
print(len(classes), "classes")
print(len(words), "lemmatized unique words")
dirname = os.path.dirname(__file__)
filenameobj1 = os.path.join(dirname, 'words.pkl')
pickle.dump(words, open(filenameobj1, "wb"))
dirname = os.path.dirname(__file__)
filenameobj2 = os.path.join(dirname, 'classes.pkl')
pickle.dump(classes, open(filenameobj2, "wb"))
# time to initialize model training
# training initializer
# initializing training data
training = []
output_empty = [0] * len(classes)
for doc in documents:
# initializing bag of words
bag = []
# list of tokenized words for the pattern
pattern_words = doc[0]
# lemmatize each word - create base word, in attempt to represent related words
pattern_words = [lemmatizer.lemmatize(
word.lower()) for word in pattern_words]
# create our bag of words array with 1, if word match found in current pattern
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
# output is a '0' for each tag and '1' for current tag (for each pattern)
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
training.append([bag, output_row])
# shuffle our features and turn into np.array
random.shuffle(training)
training = np.array(training)
# create train and test lists. X - patterns, Y - intents
train_x = list(training[:, 0])
train_y = list(training[:, 1])
print("Training data created")
# actual training
# Create model - 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons
# equal to number of intents to predict output intent with softmax
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(64, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation="softmax"))
model.summary()
# Compile model. Stochastic gradient descent with Nesterov accelerated gradient gives good results for this model
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss="categorical_crossentropy",
optimizer=sgd, metrics=["accuracy"])
# for choosing an optimal number of training epochs to avoid underfitting or overfitting use an early stopping callback to keras
# based on either accuracy or loos monitoring. If the loss is being monitored, training comes to halt when there is an
# increment observed in loss values. Or, If accuracy is being monitored, training comes to halt when there is decrement observed in accuracy values.
# from keras import callbacks
# earlystopping = callbacks.EarlyStopping(monitor ="loss", mode ="min", patience = 5, restore_best_weights = True)
# callbacks =[earlystopping]
# fitting and saving the model
hist = model.fit(np.array(train_x), np.array(train_y),
epochs=200, batch_size=5, verbose=1)
dirname = os.path.dirname(__file__)
filenameobj = os.path.join(dirname, 'chatbot_model.h5')
model.save(filenameobj, hist)
print("Model Created!")