-
Notifications
You must be signed in to change notification settings - Fork 56
/
main.py
390 lines (329 loc) · 15.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""
Copyright (c) 2020-present NAVER Corp.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import numpy as np
import os
import pickle
import random
import torch
import torch.nn as nn
import torch.optim
from config import get_configs
from data_loaders import get_data_loader
from inference import CAMComputer
from util import string_contains_any
import wsol
import wsol.method
def set_random_seed(seed):
if seed is None:
return
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
class PerformanceMeter(object):
def __init__(self, split, higher_is_better=True):
self.best_function = max if higher_is_better else min
self.current_value = None
self.best_value = None
self.best_epoch = None
self.value_per_epoch = [] \
if split == 'val' else [-np.inf if higher_is_better else np.inf]
def update(self, new_value):
self.value_per_epoch.append(new_value)
self.current_value = self.value_per_epoch[-1]
self.best_value = self.best_function(self.value_per_epoch)
self.best_epoch = self.value_per_epoch.index(self.best_value)
class Trainer(object):
_CHECKPOINT_NAME_TEMPLATE = '{}_checkpoint.pth.tar'
_SPLITS = ('train', 'val', 'test')
_EVAL_METRICS = ['loss', 'classification', 'localization']
_BEST_CRITERION_METRIC = 'localization'
_NUM_CLASSES_MAPPING = {
"CUB": 200,
"ILSVRC": 1000,
"OpenImages": 100,
}
_FEATURE_PARAM_LAYER_PATTERNS = {
'vgg': ['features.'],
'resnet': ['layer4.', 'fc.'],
'inception': ['Mixed', 'Conv2d_1', 'Conv2d_2',
'Conv2d_3', 'Conv2d_4'],
}
def __init__(self):
self.args = get_configs()
set_random_seed(self.args.seed)
print(self.args)
self.performance_meters = self._set_performance_meters()
self.reporter = self.args.reporter
self.model = self._set_model()
self.cross_entropy_loss = nn.CrossEntropyLoss().cuda()
self.optimizer = self._set_optimizer()
self.loaders = get_data_loader(
data_roots=self.args.data_paths,
metadata_root=self.args.metadata_root,
batch_size=self.args.batch_size,
workers=self.args.workers,
resize_size=self.args.resize_size,
crop_size=self.args.crop_size,
proxy_training_set=self.args.proxy_training_set,
num_val_sample_per_class=self.args.num_val_sample_per_class)
def _set_performance_meters(self):
self._EVAL_METRICS += ['localization_IOU_{}'.format(threshold)
for threshold in self.args.iou_threshold_list]
eval_dict = {
split: {
metric: PerformanceMeter(split,
higher_is_better=False
if metric == 'loss' else True)
for metric in self._EVAL_METRICS
}
for split in self._SPLITS
}
return eval_dict
def _set_model(self):
num_classes = self._NUM_CLASSES_MAPPING[self.args.dataset_name]
print("Loading model {}".format(self.args.architecture))
model = wsol.__dict__[self.args.architecture](
dataset_name=self.args.dataset_name,
architecture_type=self.args.architecture_type,
pretrained=self.args.pretrained,
num_classes=num_classes,
large_feature_map=self.args.large_feature_map,
pretrained_path=self.args.pretrained_path,
adl_drop_rate=self.args.adl_drop_rate,
adl_drop_threshold=self.args.adl_threshold,
acol_drop_threshold=self.args.acol_threshold)
model = model.cuda()
print(model)
return model
def _set_optimizer(self):
param_features = []
param_classifiers = []
def param_features_substring_list(architecture):
for key in self._FEATURE_PARAM_LAYER_PATTERNS:
if architecture.startswith(key):
return self._FEATURE_PARAM_LAYER_PATTERNS[key]
raise KeyError("Fail to recognize the architecture {}"
.format(self.args.architecture))
for name, parameter in self.model.named_parameters():
if string_contains_any(
name,
param_features_substring_list(self.args.architecture)):
if self.args.architecture in ('vgg16', 'inception_v3'):
param_features.append(parameter)
elif self.args.architecture == 'resnet50':
param_classifiers.append(parameter)
else:
if self.args.architecture in ('vgg16', 'inception_v3'):
param_classifiers.append(parameter)
elif self.args.architecture == 'resnet50':
param_features.append(parameter)
optimizer = torch.optim.SGD([
{'params': param_features, 'lr': self.args.lr},
{'params': param_classifiers,
'lr': self.args.lr * self.args.lr_classifier_ratio}],
momentum=self.args.momentum,
weight_decay=self.args.weight_decay,
nesterov=True)
return optimizer
def _wsol_training(self, images, target):
if (self.args.wsol_method == 'cutmix' and
self.args.cutmix_prob > np.random.rand(1) and
self.args.cutmix_beta > 0):
images, target_a, target_b, lam = wsol.method.cutmix(
images, target, self.args.cutmix_beta)
output_dict = self.model(images)
logits = output_dict['logits']
loss = (self.cross_entropy_loss(logits, target_a) * lam +
self.cross_entropy_loss(logits, target_b) * (1. - lam))
return logits, loss
if self.args.wsol_method == 'has':
images = wsol.method.has(images, self.args.has_grid_size,
self.args.has_drop_rate)
output_dict = self.model(images, target)
logits = output_dict['logits']
if self.args.wsol_method in ('acol', 'spg'):
loss = wsol.method.__dict__[self.args.wsol_method].get_loss(
output_dict, target, spg_thresholds=self.args.spg_thresholds)
else:
loss = self.cross_entropy_loss(logits, target)
return logits, loss
def train(self, split):
self.model.train()
loader = self.loaders[split]
total_loss = 0.0
num_correct = 0
num_images = 0
for batch_idx, (images, target, _) in enumerate(loader):
images = images.cuda()
target = target.cuda()
if batch_idx % int(len(loader) / 10) == 0:
print(" iteration ({} / {})".format(batch_idx + 1, len(loader)))
logits, loss = self._wsol_training(images, target)
pred = logits.argmax(dim=1)
total_loss += loss.item() * images.size(0)
num_correct += (pred == target).sum().item()
num_images += images.size(0)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
loss_average = total_loss / float(num_images)
classification_acc = num_correct / float(num_images) * 100
self.performance_meters[split]['classification'].update(
classification_acc)
self.performance_meters[split]['loss'].update(loss_average)
return dict(classification_acc=classification_acc,
loss=loss_average)
def print_performances(self):
for split in self._SPLITS:
for metric in self._EVAL_METRICS:
current_performance = \
self.performance_meters[split][metric].current_value
if current_performance is not None:
print("Split {}, metric {}, current value: {}".format(
split, metric, current_performance))
if split != 'test':
print("Split {}, metric {}, best value: {}".format(
split, metric,
self.performance_meters[split][metric].best_value))
print("Split {}, metric {}, best epoch: {}".format(
split, metric,
self.performance_meters[split][metric].best_epoch))
def save_performances(self):
log_path = os.path.join(self.args.log_folder, 'performance_log.pickle')
with open(log_path, 'wb') as f:
pickle.dump(self.performance_meters, f)
def _compute_accuracy(self, loader):
num_correct = 0
num_images = 0
for i, (images, targets, image_ids) in enumerate(loader):
images = images.cuda()
targets = targets.cuda()
output_dict = self.model(images)
pred = output_dict['logits'].argmax(dim=1)
num_correct += (pred == targets).sum().item()
num_images += images.size(0)
classification_acc = num_correct / float(num_images) * 100
return classification_acc
def evaluate(self, epoch, split):
print("Evaluate epoch {}, split {}".format(epoch, split))
self.model.eval()
accuracy = self._compute_accuracy(loader=self.loaders[split])
self.performance_meters[split]['classification'].update(accuracy)
cam_computer = CAMComputer(
model=self.model,
loader=self.loaders[split],
metadata_root=os.path.join(self.args.metadata_root, split),
mask_root=self.args.mask_root,
iou_threshold_list=self.args.iou_threshold_list,
dataset_name=self.args.dataset_name,
split=split,
cam_curve_interval=self.args.cam_curve_interval,
multi_contour_eval=self.args.multi_contour_eval,
log_folder=self.args.log_folder,
)
cam_performance = cam_computer.compute_and_evaluate_cams()
if self.args.multi_iou_eval or self.args.dataset_name == 'OpenImages':
loc_score = np.average(cam_performance)
else:
loc_score = cam_performance[self.args.iou_threshold_list.index(50)]
self.performance_meters[split]['localization'].update(loc_score)
if self.args.dataset_name in ('CUB', 'ILSVRC'):
for idx, IOU_THRESHOLD in enumerate(self.args.iou_threshold_list):
self.performance_meters[split][
'localization_IOU_{}'.format(IOU_THRESHOLD)].update(
cam_performance[idx])
def _torch_save_model(self, filename, epoch):
torch.save({'architecture': self.args.architecture,
'epoch': epoch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict()},
os.path.join(self.args.log_folder, filename))
def save_checkpoint(self, epoch, split):
if (self.performance_meters[split][self._BEST_CRITERION_METRIC]
.best_epoch) == epoch:
self._torch_save_model(
self._CHECKPOINT_NAME_TEMPLATE.format('best'), epoch)
if self.args.epochs == epoch:
self._torch_save_model(
self._CHECKPOINT_NAME_TEMPLATE.format('last'), epoch)
def report_train(self, train_performance, epoch, split='train'):
reporter_instance = self.reporter(self.args.reporter_log_root, epoch)
reporter_instance.add(
key='{split}/classification'.format(split=split),
val=train_performance['classification_acc'])
reporter_instance.add(
key='{split}/loss'.format(split=split),
val=train_performance['loss'])
reporter_instance.write()
def report(self, epoch, split):
reporter_instance = self.reporter(self.args.reporter_log_root, epoch)
for metric in self._EVAL_METRICS:
reporter_instance.add(
key='{split}/{metric}'
.format(split=split, metric=metric),
val=self.performance_meters[split][metric].current_value)
reporter_instance.add(
key='{split}/{metric}_best'
.format(split=split, metric=metric),
val=self.performance_meters[split][metric].best_value)
reporter_instance.write()
def adjust_learning_rate(self, epoch):
if epoch != 0 and epoch % self.args.lr_decay_frequency == 0:
for param_group in self.optimizer.param_groups:
param_group['lr'] *= 0.1
def load_checkpoint(self, checkpoint_type):
if checkpoint_type not in ('best', 'last'):
raise ValueError("checkpoint_type must be either best or last.")
checkpoint_path = os.path.join(
self.args.log_folder,
self._CHECKPOINT_NAME_TEMPLATE.format(checkpoint_type))
if os.path.isfile(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
self.model.load_state_dict(checkpoint['state_dict'], strict=True)
print("Check {} loaded.".format(checkpoint_path))
else:
raise IOError("No checkpoint {}.".format(checkpoint_path))
def main():
trainer = Trainer()
print("===========================================================")
print("Start epoch 0 ...")
trainer.evaluate(epoch=0, split='val')
trainer.print_performances()
trainer.report(epoch=0, split='val')
trainer.save_checkpoint(epoch=0, split='val')
print("Epoch 0 done.")
for epoch in range(trainer.args.epochs):
print("===========================================================")
print("Start epoch {} ...".format(epoch + 1))
trainer.adjust_learning_rate(epoch + 1)
train_performance = trainer.train(split='train')
trainer.report_train(train_performance, epoch + 1, split='train')
trainer.evaluate(epoch + 1, split='val')
trainer.print_performances()
trainer.report(epoch + 1, split='val')
trainer.save_checkpoint(epoch + 1, split='val')
print("Epoch {} done.".format(epoch + 1))
print("===========================================================")
print("Final epoch evaluation on test set ...")
trainer.load_checkpoint(checkpoint_type=trainer.args.eval_checkpoint_type)
trainer.evaluate(trainer.args.epochs, split='test')
trainer.print_performances()
trainer.report(trainer.args.epochs, split='test')
trainer.save_performances()
if __name__ == '__main__':
main()