-
Notifications
You must be signed in to change notification settings - Fork 1
/
engine.py
120 lines (99 loc) · 5.22 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
from pyspark.mllib.recommendation import ALS
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_counts_and_averages(ID_and_ratings_tuple):
"""Given a tuple (movieID, ratings_iterable)
returns (movieID, (ratings_count, ratings_avg))
"""
nratings = len(ID_and_ratings_tuple[1])
return ID_and_ratings_tuple[0], (nratings, float(sum(x for x in ID_and_ratings_tuple[1])) / nratings)
class RecommendationEngine:
"""A movie recommendation engine
"""
def __count_and_average_ratings(self):
"""Updates the movies ratings counts from
the current data self.ratings_RDD
"""
logger.info("Counting movie ratings...")
movie_ID_with_ratings_RDD = self.ratings_RDD.map(lambda x: (x[1], x[2])).groupByKey()
movie_ID_with_avg_ratings_RDD = movie_ID_with_ratings_RDD.map(get_counts_and_averages)
self.movies_rating_counts_RDD = movie_ID_with_avg_ratings_RDD.map(lambda x: (x[0], x[1][0]))
def __train_model(self):
"""Train the ALS model with the current dataset
"""
logger.info("Training the ALS model...")
self.model = ALS.train(self.ratings_RDD, self.rank, seed=self.seed,
iterations=self.iterations, lambda_=self.regularization_parameter)
logger.info("ALS model built!")
def __predict_ratings(self, user_and_movie_RDD):
"""Gets predictions for a given (userID, movieID) formatted RDD
Returns: an RDD with format (movieTitle, movieRating, numRatings)
"""
predicted_RDD = self.model.predictAll(user_and_movie_RDD)
predicted_rating_RDD = predicted_RDD.map(lambda x: (x.product, x.rating))
predicted_rating_title_and_count_RDD = \
predicted_rating_RDD.join(self.movies_titles_RDD).join(self.movies_rating_counts_RDD)
predicted_rating_title_and_count_RDD = \
predicted_rating_title_and_count_RDD.map(lambda r: (r[1][0][1], r[1][0][0], r[1][1]))
return predicted_rating_title_and_count_RDD
def add_ratings(self, ratings):
"""Add additional movie ratings in the format (user_id, movie_id, rating)
"""
# Convert ratings to an RDD
new_ratings_RDD = self.sc.parallelize(ratings)
# Add new ratings to the existing ones
self.ratings_RDD = self.ratings_RDD.union(new_ratings_RDD)
# Re-compute movie ratings count
self.__count_and_average_ratings()
# Re-train the ALS model with the new ratings
self.__train_model()
return ratings
def get_ratings_for_movie_ids(self, user_id, movie_ids):
"""Given a user_id and a list of movie_ids, predict ratings for them
"""
requested_movies_RDD = self.sc.parallelize(movie_ids).map(lambda x: (user_id, x))
# Get predicted ratings
ratings = self.__predict_ratings(requested_movies_RDD).collect()
return ratings
def get_top_ratings(self, user_id, movies_count):
"""Recommends up to movies_count top unrated movies to user_id
"""
# Get pairs of (userID, movieID) for user_id unrated movies
user_unrated_movies_RDD = self.ratings_RDD.filter(lambda rating: not rating[0] == user_id) \
.map(lambda x: (user_id, x[1])).distinct()
# Get predicted ratings
ratings = self.__predict_ratings(user_unrated_movies_RDD).filter(lambda r: r[2] >= 25).takeOrdered(movies_count,
key=lambda
x: -x[1])
return ratings
def __init__(self, sc, dataset_path):
"""Init the recommendation engine given a Spark context and a dataset path
"""
logger.info("Starting up the Recommendation Engine: ")
self.sc = sc
# Load ratings data for later use
logger.info("Loading Ratings data...")
ratings_file_path = os.path.join(dataset_path, 'ratings.csv')
ratings_raw_RDD = self.sc.textFile(ratings_file_path)
ratings_raw_data_header = ratings_raw_RDD.take(1)[0]
self.ratings_RDD = ratings_raw_RDD.filter(lambda line: line != ratings_raw_data_header) \
.map(lambda line: line.split(",")).map(
lambda tokens: (int(tokens[0]), int(tokens[1]), float(tokens[2]))).cache()
# Load movies data for later use
logger.info("Loading Movies data...")
movies_file_path = os.path.join(dataset_path, 'movies.csv')
movies_raw_RDD = self.sc.textFile(movies_file_path)
movies_raw_data_header = movies_raw_RDD.take(1)[0]
self.movies_RDD = movies_raw_RDD.filter(lambda line: line != movies_raw_data_header) \
.map(lambda line: line.split(",")).map(lambda tokens: (int(tokens[0]), tokens[1], tokens[2])).cache()
self.movies_titles_RDD = self.movies_RDD.map(lambda x: (int(x[0]), x[1])).cache()
# Pre-calculate movies ratings counts
self.__count_and_average_ratings()
# Train the model
self.rank = 8
self.seed = 5
self.iterations = 10
self.regularization_parameter = 0.1
self.__train_model()