-
Notifications
You must be signed in to change notification settings - Fork 0
/
simulator.py
437 lines (347 loc) · 16.6 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#!/usr/bin/env python3
"""
Scripts to drive a donkey 4 car
Usage:
manage.py (drive) [--model=<model>] [--js] [--type=(linear|categorical)] [--camera=(single|stereo)] [--meta=<key:value> ...] [--myconfig=<filename>]
manage.py (train) [--tubs=tubs] (--model=<model>) [--type=(linear|inferred|tensorrt_linear|tflite_linear)]
Options:
-h --help Show this screen.
--js Use physical joystick.
-f --file=<file> A text file containing paths to tub files, one per line. Option may be used more than once.
--meta=<key:value> Key/Value strings describing describing a piece of meta data about this drive. Option may be used more than once.
--myconfig=filename Specify myconfig file to use.
[default: myconfig.py]
"""
import os
import time
from docopt import docopt
import numpy as np
import donkeycar as dk
from donkeycar.parts.transform import TriggeredCallback, DelayedTrigger
from donkeycar.parts.tub_v2 import TubWriter
from donkeycar.parts.datastore import TubHandler
from donkeycar.parts.controller import LocalWebController, JoystickController, WebFpv
from donkeycar.parts.throttle_filter import ThrottleFilter
from donkeycar.parts.behavior import BehaviorPart
from donkeycar.parts.file_watcher import FileWatcher
from donkeycar.parts.launch import AiLaunch
from donkeycar.utils import *
def drive(cfg, model_path=None, use_joystick=False, model_type=None, camera_type='single', meta=[]):
'''
Construct a working robotic vehicle from many parts.
Each part runs as a job in the Vehicle loop, calling either
it's run or run_threaded method depending on the constructor flag `threaded`.
All parts are updated one after another at the framerate given in
cfg.DRIVE_LOOP_HZ assuming each part finishes processing in a timely manner.
Parts may have named outputs and inputs. The framework handles passing named outputs
to parts requesting the same named input.
'''
if cfg.DONKEY_GYM:
#the simulator will use cuda and then we usually run out of resources
#if we also try to use cuda. so disable for donkey_gym.
os.environ["CUDA_VISIBLE_DEVICES"]="-1"
if model_type is None:
if cfg.TRAIN_LOCALIZER:
model_type = "localizer"
elif cfg.TRAIN_BEHAVIORS:
model_type = "behavior"
else:
model_type = cfg.DEFAULT_MODEL_TYPE
#Initialize car
V = dk.vehicle.Vehicle()
from donkeycar.parts.dgym import DonkeyGymEnv
inputs = []
cam = DonkeyGymEnv(cfg.DONKEY_SIM_PATH, host=cfg.SIM_HOST, env_name=cfg.DONKEY_GYM_ENV_NAME, conf=cfg.GYM_CONF, delay=cfg.SIM_ARTIFICIAL_LATENCY)
threaded = True
inputs = ['angle', 'throttle', 'brake']
V.add(cam, inputs=inputs, outputs=['cam/image_array', 'cam/image_array_b'], threaded=threaded)
if use_joystick or cfg.USE_JOYSTICK_AS_DEFAULT:
#modify max_throttle closer to 1.0 to have more power
#modify steering_scale lower than 1.0 to have less responsive steering
if cfg.CONTROLLER_TYPE == "MM1":
from donkeycar.parts.robohat import RoboHATController
ctr = RoboHATController(cfg)
elif "custom" == cfg.CONTROLLER_TYPE:
#
# custom controller created with `donkey createjs` command
#
from my_joystick import MyJoystickController
ctr = MyJoystickController(
throttle_dir=cfg.JOYSTICK_THROTTLE_DIR,
throttle_scale=cfg.JOYSTICK_MAX_THROTTLE,
steering_scale=cfg.JOYSTICK_STEERING_SCALE,
auto_record_on_throttle=cfg.AUTO_RECORD_ON_THROTTLE)
ctr.set_deadzone(cfg.JOYSTICK_DEADZONE)
else:
from donkeycar.parts.controller import get_js_controller
ctr = get_js_controller(cfg)
if cfg.USE_NETWORKED_JS:
from donkeycar.parts.controller import JoyStickSub
netwkJs = JoyStickSub(cfg.NETWORK_JS_SERVER_IP)
V.add(netwkJs, threaded=True)
ctr.js = netwkJs
V.add(ctr,
inputs=['cam/image_array, cam/image_array_b'],
outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'],
threaded=True)
else:
#This web controller will create a web server that is capable
#of managing steering, throttle, and modes, and more.
ctr = LocalWebController(port=cfg.WEB_CONTROL_PORT, mode=cfg.WEB_INIT_MODE)
V.add(ctr,
inputs=['cam/image_array', 'tub/num_records'],
outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'],
threaded=True)
#this throttle filter will allow one tap back for esc reverse
th_filter = ThrottleFilter()
V.add(th_filter, inputs=['user/throttle'], outputs=['user/throttle'])
#See if we should even run the pilot module.
#This is only needed because the part run_condition only accepts boolean
class PilotCondition:
def run(self, mode):
if mode == 'user':
return False
else:
return True
V.add(PilotCondition(), inputs=['user/mode'], outputs=['run_pilot'])
class LedConditionLogic:
def __init__(self, cfg):
self.cfg = cfg
def run(self, mode, recording, recording_alert, behavior_state, model_file_changed, track_loc):
#returns a blink rate. 0 for off. -1 for on. positive for rate.
if track_loc is not None:
led.set_rgb(*self.cfg.LOC_COLORS[track_loc])
return -1
if model_file_changed:
led.set_rgb(self.cfg.MODEL_RELOADED_LED_R, self.cfg.MODEL_RELOADED_LED_G, self.cfg.MODEL_RELOADED_LED_B)
return 0.1
else:
led.set_rgb(self.cfg.LED_R, self.cfg.LED_G, self.cfg.LED_B)
if recording_alert:
led.set_rgb(*recording_alert)
return self.cfg.REC_COUNT_ALERT_BLINK_RATE
else:
led.set_rgb(self.cfg.LED_R, self.cfg.LED_G, self.cfg.LED_B)
if behavior_state is not None and model_type == 'behavior':
r, g, b = self.cfg.BEHAVIOR_LED_COLORS[behavior_state]
led.set_rgb(r, g, b)
return -1 #solid on
if recording:
return -1 #solid on
elif mode == 'user':
return 1
elif mode == 'local_angle':
return 0.5
elif mode == 'local':
return 0.1
return 0
if cfg.HAVE_RGB_LED and not cfg.DONKEY_GYM:
from donkeycar.parts.led_status import RGB_LED
led = RGB_LED(cfg.LED_PIN_R, cfg.LED_PIN_G, cfg.LED_PIN_B, cfg.LED_INVERT)
led.set_rgb(cfg.LED_R, cfg.LED_G, cfg.LED_B)
V.add(LedConditionLogic(cfg), inputs=['user/mode', 'recording', "records/alert", 'behavior/state', 'modelfile/modified', "pilot/loc"],
outputs=['led/blink_rate'])
V.add(led, inputs=['led/blink_rate'])
def get_record_alert_color(num_records):
col = (0, 0, 0)
for count, color in cfg.RECORD_ALERT_COLOR_ARR:
if num_records >= count:
col = color
return col
class RecordTracker:
def __init__(self):
self.last_num_rec_print = 0
self.dur_alert = 0
self.force_alert = 0
def run(self, num_records):
if num_records is None:
return 0
if self.last_num_rec_print != num_records or self.force_alert:
self.last_num_rec_print = num_records
if num_records % 10 == 0:
print("recorded", num_records, "records")
if num_records % cfg.REC_COUNT_ALERT == 0 or self.force_alert:
self.dur_alert = num_records // cfg.REC_COUNT_ALERT * cfg.REC_COUNT_ALERT_CYC
self.force_alert = 0
if self.dur_alert > 0:
self.dur_alert -= 1
if self.dur_alert != 0:
return get_record_alert_color(num_records)
return 0
rec_tracker_part = RecordTracker()
V.add(rec_tracker_part, inputs=["tub/num_records"], outputs=['records/alert'])
if cfg.AUTO_RECORD_ON_THROTTLE and isinstance(ctr, JoystickController):
#then we are not using the circle button. hijack that to force a record count indication
def show_record_acount_status():
rec_tracker_part.last_num_rec_print = 0
rec_tracker_part.force_alert = 1
ctr.set_button_down_trigger('circle', show_record_acount_status)
# Use the FPV preview, which will show the cropped image output, or the full frame.
if cfg.USE_FPV:
V.add(WebFpv(), inputs=['cam/image_array'], threaded=True)
#Behavioral state
if cfg.TRAIN_BEHAVIORS:
bh = BehaviorPart(cfg.BEHAVIOR_LIST)
V.add(bh, outputs=['behavior/state', 'behavior/label', "behavior/one_hot_state_array"])
try:
ctr.set_button_down_trigger('L1', bh.increment_state)
except:
pass
inputs = ['cam/image_array', "behavior/one_hot_state_array"]
else:
inputs=['cam/image_array, cam/image_array_b']
def load_model(kl, model_path):
start = time.time()
print('loading model', model_path)
kl.load(model_path)
print('finished loading in %s sec.' % (str(time.time() - start)) )
def load_weights(kl, weights_path):
start = time.time()
try:
print('loading model weights', weights_path)
kl.model.load_weights(weights_path)
print('finished loading in %s sec.' % (str(time.time() - start)) )
except Exception as e:
print(e)
print('ERR>> problems loading weights', weights_path)
def load_model_json(kl, json_fnm):
start = time.time()
print('loading model json', json_fnm)
from tensorflow.python import keras
try:
with open(json_fnm, 'r') as handle:
contents = handle.read()
kl.model = keras.models.model_from_json(contents)
print('finished loading json in %s sec.' % (str(time.time() - start)) )
except Exception as e:
print(e)
print("ERR>> problems loading model json", json_fnm)
if model_path:
#When we have a model, first create an appropriate Keras part
kl = dk.utils.get_model_by_type(model_type, cfg)
model_reload_cb = None
if '.h5' in model_path or '.savedmodel' in model_path or '.uff' in \
model_path or 'tflite' in model_path or '.pkl' in model_path:
#when we have a .h5 extension
#load everything from the model file
load_model(kl, model_path)
def reload_model(filename):
load_model(kl, filename)
model_reload_cb = reload_model
elif '.json' in model_path:
#when we have a .json extension
#load the model from there and look for a matching
#.wts file with just weights
load_model_json(kl, model_path)
weights_path = model_path.replace('.json', '.weights')
load_weights(kl, weights_path)
def reload_weights(filename):
weights_path = filename.replace('.json', '.weights')
load_weights(kl, weights_path)
model_reload_cb = reload_weights
else:
print("ERR>> Unknown extension type on model file!!")
return
#this part will signal visual LED, if connected
V.add(FileWatcher(model_path, verbose=True), outputs=['modelfile/modified'])
#these parts will reload the model file, but only when ai is running so we don't interrupt user driving
V.add(FileWatcher(model_path), outputs=['modelfile/dirty'], run_condition="ai_running")
V.add(DelayedTrigger(100), inputs=['modelfile/dirty'], outputs=['modelfile/reload'], run_condition="ai_running")
V.add(TriggeredCallback(model_path, model_reload_cb), inputs=["modelfile/reload"], run_condition="ai_running")
outputs=['pilot/angle', 'pilot/throttle']
if cfg.TRAIN_LOCALIZER:
outputs.append("pilot/loc")
V.add(kl, inputs=inputs,
outputs=outputs,
run_condition='run_pilot')
if cfg.STOP_SIGN_DETECTOR:
from donkeycar.parts.object_detector.stop_sign_detector import StopSignDetector
V.add(StopSignDetector(cfg.STOP_SIGN_MIN_SCORE, cfg.STOP_SIGN_SHOW_BOUNDING_BOX), inputs=['cam/image_array', 'pilot/throttle'], outputs=['pilot/throttle', 'cam/image_array'])
#Choose what inputs should change the car.
class DriveMode:
def run(self, mode,
user_angle, user_throttle, user_brake,
pilot_angle, pilot_throttle, pilot_brake):
if mode == 'user':
return user_angle, user_throttle, user_brake
elif mode == 'local_angle':
return pilot_angle if pilot_angle else 0.0, user_throttle, user_brake
else:
return pilot_angle if pilot_angle else 0.0, pilot_throttle * cfg.AI_THROTTLE_MULT if pilot_throttle else 0.0, pilot_brake if pilot_brake else 0.0
V.add(DriveMode(),
inputs=['user/mode', 'user/angle', 'user/throttle', 'user/brake',
'pilot/angle', 'pilot/throttle', 'pilot/brake'],
outputs=['angle', 'throttle', 'brake'])
#to give the car a boost when starting ai mode in a race.
aiLauncher = AiLaunch(cfg.AI_LAUNCH_DURATION, cfg.AI_LAUNCH_THROTTLE, cfg.AI_LAUNCH_KEEP_ENABLED)
V.add(aiLauncher,
inputs=['user/mode', 'throttle'],
outputs=['throttle'])
if isinstance(ctr, JoystickController):
ctr.set_button_down_trigger(cfg.AI_LAUNCH_ENABLE_BUTTON, aiLauncher.enable_ai_launch)
class AiRunCondition:
'''
A bool part to let us know when ai is running.
'''
def run(self, mode):
if mode == "user":
return False
return True
V.add(AiRunCondition(), inputs=['user/mode'], outputs=['ai_running'])
#Ai Recording
class AiRecordingCondition:
'''
return True when ai mode, otherwize respect user mode recording flag
'''
def run(self, mode, recording):
if mode == 'user':
return recording
return True
if cfg.RECORD_DURING_AI:
V.add(AiRecordingCondition(), inputs=['user/mode', 'recording'], outputs=['recording'])
#add tub to save data
inputs=['cam/image_array', 'cam/image_array_b',
'user/angle', 'user/throttle',
'user/mode']
types=['image_array', 'image_array',
'float', 'float',
'str']
if cfg.TRAIN_BEHAVIORS:
inputs += ['behavior/state', 'behavior/label', "behavior/one_hot_state_array"]
types += ['int', 'str', 'vector']
if cfg.RECORD_DURING_AI:
inputs += ['pilot/angle', 'pilot/throttle']
types += ['float', 'float']
# do we want to store new records into own dir or append to existing
tub_path = TubHandler(path=cfg.DATA_PATH).create_tub_path() if \
cfg.AUTO_CREATE_NEW_TUB else cfg.DATA_PATH
tub_writer = TubWriter(tub_path, inputs=inputs, types=types, metadata=meta)
V.add(tub_writer, inputs=inputs, outputs=["tub/num_records"], run_condition='recording')
if cfg.PUB_CAMERA_IMAGES:
from donkeycar.parts.network import TCPServeValue
from donkeycar.parts.image import ImgArrToJpg
pub = TCPServeValue("camera")
V.add(ImgArrToJpg(), inputs=['cam/image_array'], outputs=['jpg/bin'])
V.add(pub, inputs=['jpg/bin'])
if type(ctr) is LocalWebController:
if cfg.DONKEY_GYM:
print("You can now go to http://localhost:%d to drive your car." % cfg.WEB_CONTROL_PORT)
else:
print("You can now go to <your hostname.local>:%d to drive your car." % cfg.WEB_CONTROL_PORT)
elif isinstance(ctr, JoystickController):
print("You can now move your joystick to drive your car.")
ctr.set_tub(tub_writer.tub)
ctr.print_controls()
#run the vehicle for 20 seconds
V.start(rate_hz=cfg.DRIVE_LOOP_HZ, max_loop_count=cfg.MAX_LOOPS)
if __name__ == '__main__':
args = docopt(__doc__)
cfg = dk.load_config(myconfig=args['--myconfig'])
if args['drive']:
model_type = args['--type']
camera_type = args['--camera']
drive(cfg, model_path=args['--model'], use_joystick=args['--js'],
model_type=model_type, camera_type=camera_type,
meta=args['--meta'])
elif args['train']:
print('Use python train.py instead.\n')