-
Notifications
You must be signed in to change notification settings - Fork 0
/
quaternions.py
474 lines (387 loc) · 13 KB
/
quaternions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
'''Functions to operate on, or return, quaternions.
Quaternions here consist of 4 values ``w, x, y, z``, where ``w`` is the
real (scalar) part, and ``x, y, z`` are the complex (vector) part.
Note - rotation matrices here apply to column vectors, that is,
they are applied on the left of the vector. For example:
>>> import numpy as np
>>> q = [0, 1, 0, 0] # 180 degree rotation around axis 0
>>> M = quat2mat(q) # from this module
>>> vec = np.array([1, 2, 3]).reshape((3,1)) # column vector
>>> tvec = np.dot(M, vec)
Terms used in function names:
* *mat* : array shape (3, 3) (3D non-homogenous coordinates)
* *aff* : affine array shape (4, 4) (3D homogenous coordinates)
* *quat* : quaternion shape (4,)
* *axangle* : rotations encoded by axis vector and angle scalar
'''
import math
import numpy as np
_MAX_FLOAT = np.maximum_sctype(float)
_FLOAT_EPS = np.finfo(float).eps
def fillpositive(xyz, w2_thresh=None):
''' Compute unit quaternion from last 3 values
Parameters
----------
xyz : iterable
iterable containing 3 values, corresponding to quaternion x, y, z
w2_thresh : None or float, optional
threshold to determine if w squared is really negative.
If None (default) then w2_thresh set equal to
``-np.finfo(xyz.dtype).eps``, if possible, otherwise
``-np.finfo(np.float).eps``
Returns
-------
wxyz : array shape (4,)
Full 4 values of quaternion
Notes
-----
If w, x, y, z are the values in the full quaternion, assumes w is
positive.
Gives error if w*w is estimated to be negative
w = 0 corresponds to a 180 degree rotation
The unit quaternion specifies that np.dot(wxyz, wxyz) == 1.
If w is positive (assumed here), w is given by:
w = np.sqrt(1.0-(x*x+y*y+z*z))
w2 = 1.0-(x*x+y*y+z*z) can be near zero, which will lead to
numerical instability in sqrt. Here we use the system maximum
float type to reduce numerical instability
Examples
--------
>>> import numpy as np
>>> wxyz = fillpositive([0,0,0])
>>> np.all(wxyz == [1, 0, 0, 0])
True
>>> wxyz = fillpositive([1,0,0]) # Corner case; w is 0
>>> np.all(wxyz == [0, 1, 0, 0])
True
>>> np.dot(wxyz, wxyz)
1.0
'''
# Check inputs (force error if < 3 values)
if len(xyz) != 3:
raise ValueError('xyz should have length 3')
# If necessary, guess precision of input
if w2_thresh is None:
try: # trap errors for non-array, integer array
w2_thresh = -np.finfo(xyz.dtype).eps * 3
except (AttributeError, ValueError):
w2_thresh = -_FLOAT_EPS * 3
# Use maximum precision
xyz = np.asarray(xyz, dtype=_MAX_FLOAT)
# Calculate w
w2 = 1.0 - np.dot(xyz, xyz)
if w2 < 0:
if w2 < w2_thresh:
raise ValueError('w2 should be positive, but is %e' % w2)
w = 0
else:
w = np.sqrt(w2)
return np.r_[w, xyz]
def quat2mat(q):
''' Calculate rotation matrix corresponding to quaternion
Parameters
----------
q : 4 element array-like
Returns
-------
M : (3,3) array
Rotation matrix corresponding to input quaternion *q*
Notes
-----
Rotation matrix applies to column vectors, and is applied to the
left of coordinate vectors. The algorithm here allows quaternions that
have not been normalized.
References
----------
Algorithm from http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion
Examples
--------
>>> import numpy as np
>>> M = quat2mat([1, 0, 0, 0]) # Identity quaternion
>>> np.allclose(M, np.eye(3))
True
>>> M = quat2mat([0, 1, 0, 0]) # 180 degree rotn around axis 0
>>> np.allclose(M, np.diag([1, -1, -1]))
True
'''
w, x, y, z = q
Nq = w*w + x*x + y*y + z*z
if Nq < _FLOAT_EPS:
return np.eye(3)
s = 2.0/Nq
X = x*s
Y = y*s
Z = z*s
wX = w*X; wY = w*Y; wZ = w*Z
xX = x*X; xY = x*Y; xZ = x*Z
yY = y*Y; yZ = y*Z; zZ = z*Z
return np.array(
[[ 1.0-(yY+zZ), xY-wZ, xZ+wY ],
[ xY+wZ, 1.0-(xX+zZ), yZ-wX ],
[ xZ-wY, yZ+wX, 1.0-(xX+yY) ]])
def mat2quat(M):
''' Calculate quaternion corresponding to given rotation matrix
Parameters
----------
M : array-like
3x3 rotation matrix
Returns
-------
q : (4,) array
closest quaternion to input matrix, having positive q[0]
Notes
-----
Method claimed to be robust to numerical errors in M
Constructs quaternion by calculating maximum eigenvector for matrix
K (constructed from input `M`). Although this is not tested, a
maximum eigenvalue of 1 corresponds to a valid rotation.
A quaternion q*-1 corresponds to the same rotation as q; thus the
sign of the reconstructed quaternion is arbitrary, and we return
quaternions with positive w (q[0]).
References
----------
* http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion
* Bar-Itzhack, Itzhack Y. (2000), "New method for extracting the
quaternion from a rotation matrix", AIAA Journal of Guidance,
Control and Dynamics 23(6):1085-1087 (Engineering Note), ISSN
0731-5090
Examples
--------
>>> import numpy as np
>>> q = mat2quat(np.eye(3)) # Identity rotation
>>> np.allclose(q, [1, 0, 0, 0])
True
>>> q = mat2quat(np.diag([1, -1, -1]))
>>> np.allclose(q, [0, 1, 0, 0]) # 180 degree rotn around axis 0
True
Notes
-----
http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion
Bar-Itzhack, Itzhack Y. (2000), "New method for extracting the
quaternion from a rotation matrix", AIAA Journal of Guidance,
Control and Dynamics 23(6):1085-1087 (Engineering Note), ISSN
0731-5090
'''
# Qyx refers to the contribution of the y input vector component to
# the x output vector component. Qyx is therefore the same as
# M[0,1]. The notation is from the Wikipedia article.
Qxx, Qyx, Qzx, Qxy, Qyy, Qzy, Qxz, Qyz, Qzz = M.flat
# Fill only lower half of symmetric matrix
K = np.array([
[Qxx - Qyy - Qzz, 0, 0, 0 ],
[Qyx + Qxy, Qyy - Qxx - Qzz, 0, 0 ],
[Qzx + Qxz, Qzy + Qyz, Qzz - Qxx - Qyy, 0 ],
[Qyz - Qzy, Qzx - Qxz, Qxy - Qyx, Qxx + Qyy + Qzz]]
) / 3.0
# Use Hermitian eigenvectors, values for speed
vals, vecs = np.linalg.eigh(K)
# Select largest eigenvector, reorder to w,x,y,z quaternion
q = vecs[[3, 0, 1, 2], np.argmax(vals)]
# Prefer quaternion with positive w
# (q * -1 corresponds to same rotation as q)
if q[0] < 0:
q *= -1
return q
def qmult(q1, q2):
''' Multiply two quaternions
Parameters
----------
q1 : 4 element sequence
q2 : 4 element sequence
Returns
-------
q12 : shape (4,) array
Notes
-----
See : http://en.wikipedia.org/wiki/Quaternions#Hamilton_product
'''
w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
w = w1*w2 - x1*x2 - y1*y2 - z1*z2
x = w1*x2 + x1*w2 + y1*z2 - z1*y2
y = w1*y2 + y1*w2 + z1*x2 - x1*z2
z = w1*z2 + z1*w2 + x1*y2 - y1*x2
return np.array([w, x, y, z])
def qconjugate(q):
''' Conjugate of quaternion
Parameters
----------
q : 4 element sequence
w, i, j, k of quaternion
Returns
-------
conjq : array shape (4,)
w, i, j, k of conjugate of `q`
'''
return np.array(q) * np.array([1.0, -1, -1, -1])
def qnorm(q):
''' Return norm of quaternion
Parameters
----------
q : 4 element sequence
w, i, j, k of quaternion
Returns
-------
n : scalar
quaternion norm
'''
return np.dot(q, q)
def qisunit(q):
''' Return True is this is very nearly a unit quaternion '''
return np.allclose(qnorm(q), 1)
def qinverse(q):
''' Return multiplicative inverse of quaternion `q`
Parameters
----------
q : 4 element sequence
w, i, j, k of quaternion
Returns
-------
invq : array shape (4,)
w, i, j, k of quaternion inverse
'''
return qconjugate(q) / qnorm(q)
def qeye():
''' Return identity quaternion '''
return np.array([1.0,0,0,0])
def rotate_vector(v, q):
''' Apply transformation in quaternion `q` to vector `v`
Parameters
----------
v : 3 element sequence
3 dimensional vector
q : 4 element sequence
w, i, j, k of quaternion
Returns
-------
vdash : array shape (3,)
`v` rotated by quaternion `q`
Notes
-----
See: http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Describing_rotations_with_quaternions
'''
varr = np.zeros((4,))
varr[1:] = v
return qmult(q, qmult(varr, qconjugate(q)))[1:]
def nearly_equivalent(q1, q2, rtol=1e-5, atol=1e-8):
''' Returns True if `q1` and `q2` give near equivalent transforms
`q1` may be nearly numerically equal to `q2`, or nearly equal to `q2` * -1
(because a quaternion multiplied by -1 gives the same transform).
Parameters
----------
q1 : 4 element sequence
w, x, y, z of first quaternion
q2 : 4 element sequence
w, x, y, z of second quaternion
Returns
-------
equiv : bool
True if `q1` and `q2` are nearly equivalent, False otherwise
Examples
--------
>>> q1 = [1, 0, 0, 0]
>>> nearly_equivalent(q1, [0, 1, 0, 0])
False
>>> nearly_equivalent(q1, [1, 0, 0, 0])
True
>>> nearly_equivalent(q1, [-1, 0, 0, 0])
True
'''
q1 = np.array(q1)
q2 = np.array(q2)
if np.allclose(q1, q2, rtol, atol):
return True
return np.allclose(q1 * -1, q2, rtol, atol)
def axangle2quat(vector, theta, is_normalized=False):
''' Quaternion for rotation of angle `theta` around `vector`
Parameters
----------
vector : 3 element sequence
vector specifying axis for rotation.
theta : scalar
angle of rotation in radians.
is_normalized : bool, optional
True if vector is already normalized (has norm of 1). Default
False.
Returns
-------
quat : 4 element sequence of symbols
quaternion giving specified rotation
Examples
--------
>>> q = axangle2quat([1, 0, 0], np.pi)
>>> np.allclose(q, [0, 1, 0, 0])
True
Notes
-----
Formula from http://mathworld.wolfram.com/EulerParameters.html
'''
vector = np.array(vector)
if not is_normalized:
# Cannot divide in-place because input vector may be integer type,
# whereas output will be float type; this may raise an error in versions
# of numpy > 1.6.1
vector = vector / math.sqrt(np.dot(vector, vector))
t2 = theta / 2.0
st2 = math.sin(t2)
return np.concatenate(([math.cos(t2)],
vector * st2))
def quat2axangle(quat, identity_thresh=None):
''' Convert quaternion to rotation of angle around axis
Parameters
----------
quat : 4 element sequence
w, x, y, z forming quaternion.
identity_thresh : None or scalar, optional
Threshold below which the norm of the vector part of the quaternion (x,
y, z) is deemed to be 0, leading to the identity rotation. None (the
default) leads to a threshold estimated based on the precision of the
input.
Returns
-------
theta : scalar
angle of rotation.
vector : array shape (3,)
axis around which rotation occurs.
Examples
--------
>>> vec, theta = quat2axangle([0, 1, 0, 0])
>>> vec
array([ 1., 0., 0.])
>>> np.allclose(theta, np.pi)
True
If this is an identity rotation, we return a zero angle and an arbitrary
vector:
>>> quat2axangle([1, 0, 0, 0])
(array([ 1., 0., 0.]), 0.0)
If any of the quaternion values are not finite, we return a NaN in the
angle, and an arbitrary vector:
>>> quat2axangle([1, np.inf, 0, 0])
(array([ 1., 0., 0.]), nan)
Notes
-----
A quaternion for which x, y, z are all equal to 0, is an identity rotation.
In this case we return a 0 angle and an arbitrary vector, here [1, 0, 0].
The algorithm allows for quaternions that have not been normalized.
'''
w, x, y, z = quat
Nq = w * w + x * x + y * y + z * z
if not np.isfinite(Nq):
return np.array([1.0, 0, 0]), float('nan')
if identity_thresh is None:
try:
identity_thresh = np.finfo(Nq.type).eps * 3
except (AttributeError, ValueError): # Not a numpy type or not float
identity_thresh = _FLOAT_EPS * 3
if Nq < _FLOAT_EPS ** 2: # Results unreliable after normalization
return np.array([1.0, 0, 0]), 0.0
if Nq != 1: # Normalize if not normalized
s = math.sqrt(Nq)
w, x, y, z = w / s, x / s, y / s, z / s
len2 = x * x + y * y + z * z
if len2 < identity_thresh ** 2:
# if vec is nearly 0,0,0, this is an identity rotation
return np.array([1.0, 0, 0]), 0.0
# Make sure w is not slightly above 1 or below -1
theta = 2 * math.acos(max(min(w, 1), -1))
return np.array([x, y, z]) / math.sqrt(len2), theta