-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides_osc_sterile.tex
889 lines (741 loc) · 26.7 KB
/
slides_osc_sterile.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
\renewcommand{\thislecture}{5 }
%
% Cover page
%
\title[Neutrino Physics / Lecture \thislecture]
{
{\huge \color{yellow} Neutrino Physics - Lecture \thislecture} \\
{\it Tensions in the 3-Flavour Neutrino Scheme:\\Sterile Neutrinos}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
%
% Outline
%
\begin{frame}{Outline for Lecture \thislecture}
\begin{itemize}
\item Summary of tensions in the 3-flavour paradigm
\item Sterile neutrino phenomenology
\item LSND/MiniBooNE anomaly
\item Reactor anomaly
\item Gallium anomaly
\item Global fits
\item Future searches
\item The SBN program
\end{itemize}
\end{frame}
%
%
%
\begin{frame}[t]{Summary of tensions in the 3-active-neutrino scheme}
\begin{columns}[t]
\begin{column}{0.50\textwidth}
{\bf \color{green}Hints:}\\
\begin{itemize}
\item {\bf LSND anomaly}\\
$\sim$50 MeV $\bar{\nu}_{e}$ appearance,\\ $\sim$3.8$\sigma$
\item {\bf MiniBooNE anomaly}\\
$\sim$1 GeV $\nu_{e}$ ($\bar{\nu}_{e}$) appearance,\\ $\sim$4.5$\sigma$ ($\sim$2.8$\sigma$)
\item {\bf Reactor anomaly}\\
Few-MeV $\bar{\nu}_{e}$ disappearance,\\ $\sim$3.0$\sigma$
\item {\bf Gallium anomaly}\\
Sub-MeV $\nu_{e}$ disappearance,\\ $\sim$2.9$\sigma$
\end{itemize}
\end{column}
\begin{column}{0.50\textwidth}
{\bf \color{red}Null results:}\\
\begin{itemize}
\item KARMEN search for $\bar{\nu}_{e}$ appearance at $\sim$50 MeV
\item OPERA and ICARUS searches for ${\nu}_{e}$ appearance at multi-GeV
\item MiniBooNE searches for $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ disappearance at $\sim$1 GeV
\item CDHS and MINOS(+) searches for $\nu_{\mu}$ disappearance at few-GeV
\item IceCuBE searches for $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ disappearance at $\sim$ 0.3 - 20 TeV
\end{itemize}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}[t]{A 4$^{th}$ neutrino?}
\begin{columns}[t]
\begin{column}{0.50\textwidth}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/etc/3p1.png}
\end{column}
\begin{column}{0.50\textwidth}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/etc/zwidth.png}
\end{column}
\end{columns}
\begin{center}
{\bf \color{red} A 4$^{th}$ light neutrino would have to be sterile}
\end{center}
\end{frame}
%
%
%
\begin{frame}{PMNS matrix unitarity}
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/osc101/upmns_unitarity}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{PMNS matrix unitarity}
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/osc101/upmns_no_unitarity}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{PMNS matrix unitarity}
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/osc101/unitarity_limits}\\
\end{center}
\vspace{0.2cm}
{\scriptsize \color{blue}[Mark Ross-Lonergan, NuFact 2016]}
\end{frame}
%
%
%
\begin{frame}[t]{Sterile neutrino phenomenology}
Mixing between active and sterile neutrinos?
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/osc101/bigger_pmns}\\
\end{center}
The existence of such gauge singlets is well motivated and is a
natural consequence of a non-zero neutrino mass.\\
\vspace{0.2cm}
There is no a priori scale for the mass of these gauge singlets.
\end{frame}
%
%
%
\begin{frame}[t]{Sterile neutrino phenomenology}
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/osc101/3p2_mass_states}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}[t]{3+1 sterile neutrino phenomenology}
\begin{itemize}
{\small
\item {\bf \color{red} $\pbar{\nu}_{e}$ disappearance}
\[
\displaystyle
P(\pbar{\nu}_{e} \nrightarrow \pbar{\nu}_{e}) = 1 - sin^{2}(2\theta_{ee}) {\cdot}sin^{2}(\frac{{\Delta}m^{2}_{41}}{4E_{\nu}}),\hspace{0.1cm}
{\color{red}sin^{2}(2\theta_{ee})} = 4 {\color{red}|U_{e4}|^{2}} \cdot (1-{\color{red} |U_{e4}|^{2}})
\]
\item {\bf \color{blue} $\pbar{\nu}_{\mu}$ disappearance}
\[
\displaystyle
P(\pbar{\nu}_{\mu} \nrightarrow \pbar{\nu}_{\mu}) = 1 - sin^{2}(2\theta_{\mu\mu}){\cdot}sin^{2}(\frac{{\Delta}m^{2}_{41}}{4E_{\nu}}),\hspace{0.1cm}
{\color{blue}sin^{2}(2\theta_{\mu\mu})} = 4 {\color{blue}|U_{{\mu}4}|^{2}} \cdot (1-{\color{blue}|U_{{\mu}4}|^{2}})
\]
\item {\bf \color{green} $\pbar{\nu}_{e}$ appearance in $\pbar{\nu}_{\mu}$ beam}
\[
\displaystyle
P(\pbar{\nu}_{\mu} \nrightarrow \pbar{\nu}_{e}) = 1 - sin^{2}(2\theta_{{\mu}e}){\cdot}sin^{2}(\frac{{\Delta}m^{2}_{41}}{4E_{\nu}}),\hspace{0.1cm}
{\color{green}sin^{2}(2\theta_{{\mu}e})} = 4 {\color{red} |U_{e4}|^{2}} \cdot {\color{blue} |U_{{\mu}4}|^{2}}
\]
}
\end{itemize}
\begin{center}
Relation between appearance and disappearance channels:\\
\underline{$\pbar{\nu}_{\mu} \rightarrow \pbar{\nu}_{e}$ appearance requires $\pbar{\nu}_{\mu}$ and $\pbar{\nu}_{e}$ disappearance.}
\end{center}
\end{frame}
%
%
%
\begin{frame}[t]{The LSND experiment}
{\scriptsize
Liquid Scintillator Neutrino Detector (LSND) experiment (Los Alamos, 1993-1998) using a neutrino beam
from $\pi^{+}$ decay at rest {\color{blue}[Athanassopoulos et al., NIM A388 (1997) 149-172]}.\\
}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/beyond3nu/accelerator/lsnd.png}\\
\includegraphics[width=0.70\textwidth]{./images/beyond3nu/accelerator/dar_flux.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{itemize}
{\scriptsize
\item 0.8-MW 800-MeV p beam % (at 120 Hz, 600 $\mu$s-long pulses)
\item Copious amounts of pions produced in interactions with a water target
\item $\pi^{+}$ come to rest and decay
\item Only a small fraction of $\pi^{+}$ (3.4\%) decayed in flight
\item $\pi^{-}$/$\pi^{+}$ $\sim$ 1/8 and most $\pi^{-}$ (and $\mu^{-}$) are absorbed before decaying.
\item Flux shape determined simply from $\pi$, and $\mu$ decay and is well known.
\item Homogenous mineral oil (167 tonnes) detector viewed by 1220 photomultiplier tubes (isotropic scintillation light + directional Cherenkov light cone)
\item At a baseline of $\sim$30m (L/E $\sim$ 1m/MeV)
\item $\bar{\nu}_{e}$ detection: Prompt $e^{+}$ signal ({\color{red}$\bar{\nu}_{e}$ + p $\rightarrow$ $e^{+}$ + n})
followed by a correlated signal from n capture ({\color{red}n + p $\rightarrow$ d + $\gamma$} (2.2 eV))\\
% \item No $e^{-},e^{+}$ separation, but $e^{-}$ from $\nu_{e}+^{12}C$ with energies $<$36 MeV.
}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[t]{The LSND anomaly}
\begin{center}
{\bf $\sim$3.8$\sigma$ $\bar{\nu}_{e}$ appearance in a beam of $\bar{\nu}_{\mu}$ from $\mu$ decay at rest\\
($\nu_{\mu}$ energy $<$ 52.8 eV) at a baseline of $\sim$30 m (L/E $\sim$ 0.7 m/MeV)}\\
\end{center}
\begin{columns}
\begin{column}{0.50\textwidth}
\includegraphics[width=0.90\textwidth]{./images/beyond3nu/accelerator/lsnd_excess.png}\\
\end{column}
\begin{column}{0.50\textwidth}
{\small
Main backgrounds:\\
\begin{itemize}
{\small
\item ${\mu}^{-}$ decay at rest\\
% ($\bar{\nu}_{e}$ from $\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu};
% \mu^{-} \rightarrow e^{-}+\bar{\nu}_{e}+\nu_{\mu}$)
followed by $\bar{\nu}_{e}$ + p $\rightarrow$ $e^{+}$ + n
\item ${\pi}^{-}$ decay in flight\\
followed by $\bar{\nu}_{\mu}+p \rightarrow \mu^{+}+n$\\
}
\end{itemize}
\vspace{0.1cm}
{\centering
{\bf $\bar{\nu}_{e}$ excess observed:}\\
{\bf \color{red}87.9 $\pm$ 22.4 (stat) $\pm$ 6 (syst)}\\
\vspace{0.1cm}
Under a 2-$\nu$ mixing hypothesis:\\
{\color{red}$P(\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}})$ = 0.264 $\pm$ 0.067 $\pm$ 0.045 \%} \\
}
}
\end{column}
\end{columns}
\begin{center}
{\scriptsize \color{blue}[Aguilar-Arevalo, RD64 (2001) 112007]}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}[t]{But no significant $\bar{\nu}_{e}$ excess seen in KARMEN}
\begin{columns}
\begin{column}{0.35\textwidth}
{\scriptsize
At the same time with LSND, a very similar experiment (KARMEN) using a segmented liquid scintillation calorimeter
was run at the Rutherford Appleton Laboratory exploiting the distinct time structure of the ISIS source
{\color{blue}[Drexlin et al., NIM A289 (1990) 490-495]}. \\
\vspace{0.5cm}
KARMEN found no evidence for a $\bar{\nu}_{e}$ excess
{\color{blue}[Armbruster et al., Phys.Rev. D65 (2002) 112001]}.\\
\vspace{0.5cm}
However the KARMEN and LSND results were not incompatible (under a 2-neutrino oscillation hypothesis).\\
}
\end{column}
\begin{column}{0.65\textwidth}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/accelerator/lsnd_karmen_combined.png}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}[t]{Testing the LSND oscillation hypothesis: MiniBooNE}
{\small
MiniBooNE experiment:
\begin{itemize}
{\small
\item Keeping the same L/E ratio, but perform an indpendent experiment at a different energy range,
with different event signature / backgrounds and different systematics\\
\item Detector: 800 tonnes of mineral oil instrumented with 1280 photosensors\\
\item $\sim$500 m from the target, at the Booster neutrino beam at Fermilab\\
}
\end{itemize}
}
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/beyond3nu/accelerator/miniboone.png}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}[t]{MiniBooNE results}
\begin{columns}[T]
\begin{column}{0.55\textwidth}
\includegraphics[width=0.90\textwidth]{./images/beyond3nu/accelerator/miniboone_osc_results_spectra.png}
\vspace{0.1cm}
{\scriptsize \color{blue}[Phys. Rev. Lett. 110, 161801 (2013)]}\\
\end{column}
\begin{column}{0.35\textwidth}
\includegraphics[width=0.99\textwidth]{./images/beyond3nu/accelerator/miniboone_osc_results_contours.png}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}[t]{Updated MiniBooNE results (2018)}
\begin{columns}[T]
\begin{column}{0.55\textwidth}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/accelerator/miniboone_new_excess}
\end{column}
\begin{column}{0.45\textwidth}
\includegraphics[width=0.99\textwidth]{./images/beyond3nu/accelerator/miniboone_new_app_prob}
\vspace{-0.2cm}
\begin{center}
{\scriptsize \color{blue}[Phys.Rev.Lett. 121 (2018) 22, 221801]}\\
{\scriptsize \color{blue}[Phys.Rev.D 103 (2021) 5, 052002]}\\
\end{center}
\end{column}
\end{columns}
\begin{itemize}
\item Additional data (1.127$\times$10$^{21}$ pot, 46\% increase)
\item Total excess of 638.0 $\pm$ 52.1(stat.) $\pm$ 122.2(syst.)
\item Overall significance 4.8$\sigma$
\end{itemize}
\end{frame}
%
%
%
\begin{frame}[t]{New MicroBooNE single photon results (2021)}
{\small
Disfavours $\Delta \rightarrow N \gamma$ as the explanation of the MiniBooNE anomaly at 94.8\% CL.\\
{\scriptsize \color{blue}[arXiv:2110.00409]}\\
}
\vspace{-0.3cm}
\begin{columns}[T]
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/beyond3nu/accelerator/uB_2021_gamma_0}
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/beyond3nu/accelerator/uB_2021_gamma_1}
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}[t]{New MicroBooNE single electron results (2021)}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/beyond3nu/accelerator/uB_2021_e_x3}
\end{center}
\end{frame}
\begin{frame}[t]{New MicroBooNE single electron results (2021)}
{\small
"Results are found to be consistent with the nominal electron neutrino
rate expectations from the Booster Neutrino Beam and no excess of electron neutrino events is observed".\\
}
\vspace{0.1cm}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/beyond3nu/accelerator/uB_2021_e_summary}
\end{center}
\end{frame}
%
%
%
\begin{frame}[t]{Multi-GeV $\nu_{e}$ and $\bar{\nu}_{e}$ appearance searches}
\begin{columns}
\begin{column}{0.40\textwidth}
\begin{itemize}
\item Recent results from the ICARUS and OPERA experiments at the CERN CNGS beam.
\item No evidence for $\nu_{e}$ appearance in multi-GeV $\nu_{\mu}$ beam.
\item Cutting away at the LSND+MiniBooNE region.
\item Global fit to appearance data still consistent with oscillations.
\end{itemize}
\end{column}
\begin{column}{0.60\textwidth}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/pheno/kopp_global_app_withcngs.png}\\
{\color{blue}[Kopp, Neutrino 2014 conference, Boston]}.
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}[t]{Recent $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ disappearance searches}
\begin{columns}
\begin{column}{0.50\textwidth}
\centering
\includegraphics[width=0.99\textwidth]{./images/beyond3nu/minos_sterile_disapp_recent}\\
{\color{blue}[arXiv:2002.00301]}.
\end{column}
\begin{column}{0.50\textwidth}
\centering
\includegraphics[width=0.90\textwidth]{./images/beyond3nu/icecube_sterile_disapp_recent}\\
{\color{blue}[arXiv:2005.12942]}.
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}[t]{The reactor anomaly}
Recent re-evaluation of the predicted reactor neutrino flux (+3.5\%), accounting of long-lived isotopes (+1\%)
and new measurements of the neutron lifetime impacting the inverse beta decay cross-section (+1.5\%).\\
\vspace{0.3cm}
Experimental results now sitting about 3$\sigma$ lower than predictions.\\
\vspace{0.2cm}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/reactor/deficit2.png}\\
{\scriptsize \color{blue}
Mention et al., Phys. Rev. D 83 073006 (2011);
Mueller et al., Phys. Rev. C 83, 054615 (2011);
P. Huber, Phys. Rev. C 84, 024617 (2011);
Hayes et al, Phys. Rev Le1. 112,202501 (2014)
}
\end{frame}
%
%
%
\begin{frame}[t]{The Gallium anomaly}
\begin{columns}
\begin{column}{0.60\textwidth}
\begin{itemize}
\item Tests of (the detection efficiency of the) GALLEX and SAGE radiochemical solar neutrino detectors
\item Neutrino detection via $\nu_{e}$ + $^{71}$Ga $\rightarrow$ $e^{-}$ + $^{71}$Ge
\item 4 runs using intense (0.6 - 2 MCi) radioactive (electron capture) $\nu_{e}$ sources
($^{51}$Cr (750 keV) and $^{37}$Ar (810 keV))
\item GALLEX: $^{51}$Cr, $<L>$=1.9m.
\item SAGE: $^{51}$Cr and $^{37}$Ar, $<L>$=0.6m.
\end{itemize}
\end{column}
\begin{column}{0.40\textwidth}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/gallium/gallex.jpg}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}[t]{The Gallium anomaly}
A deficit was observed:\\
\begin{table}[ht]
\centering
\begin{tabular}{| c | c | c | c |}
\hline
Experiment & Run & Source & Ratio (measured/predicted) \\
\hline
GALLEX & 1 & $^{51}$Cr & 0.953$\pm$0.11 \\
GALLEX & 2 & $^{51}$Cr & 0.812$^{+0.10}_{-0.11}$ \\
SAGE & 1 & $^{51}$Cr & 0.95$\pm$0.12 \\
SAGE & 2 & $^{37}$Ar & 0.791$^{+0.084}_{-0.078}$ \\
\hline
\end{tabular}
\end{table}
Combined ratio R = 0.86 $\pm$ 0.05 {\scriptsize \color{blue}[Giunti and Laveder, Phys.Rev. C83 (2011) 065504]}\\
\vspace{0.1cm}
\begin{itemize}
{\scriptsize
\item The deficit depends on the cross-section value for the
{\color{red}$\nu_{e}$ + $^{71}$Ga $\rightarrow$ $e^{-}$ + $^{71}$Ge} process.
\item The cross-section for the transition from the ground state of $^{71}$Ga to the ground state of
$^{71}$Ge is known precisely from the electron capture decay rate of $^{71}$Ge.
\item However, $\nu_{e}$ from the sources used at GALLEX and SAGE may be absorbed by $^{71}$Ga
with transitions to excited states of $^{71}$Ge (175 keV,
500 keV)
\begin{itemize}
{\scriptsize
\item Inferred from: p + $^{71}$Ga $\rightarrow$ n + $^{71}$Ge.
\item Supported by recent data {\color{blue}[Frekers et al.,Phys.Lett. B706 (2011) 134-138]}
}
\end{itemize}
}
\end{itemize}
\end{frame}
%\begin{frame}[t]{Tensions between datasets}
%
%\begin{center}
%\includegraphics[width=0.95\textwidth]{./images/beyond3nu/pheno/tension_app_disapp.png}
%\end{center}
%\end{frame}
%\begin{frame}[t]{Tensions between datasets}
%
%\begin{center}
%\includegraphics[width=0.95\textwidth]{./images/beyond3nu/pheno/tension_nu_nubar.png}
%\end{center}
%\end{frame}
%\begin{frame}[t]{Sterile neutrino phenomenology}
%
%\includegraphics[width=0.45\textwidth]{./images/beyond3nu/pheno/sterile_pmns_2.png}\\
%\end{frame}
\begin{frame}[t]{Global sterile neutrino fits}
\begin{columns}
\begin{column}{0.70\textwidth}
\centering
\includegraphics[width=0.90\textwidth]{./images/beyond3nu/pheno/global3p1.png}\\
{\scriptsize \color{blue}[Kopp, Machado, Maltoni and Schwetz, JHEP 1305 (2013) 050]}
\end{column}
\begin{column}{0.30\textwidth}
{\small
\centering
We saw {\color{blue}$\nu_{e}$ disappearance} and {\color{blue}$\nu_{\mu} \rightarrow \nu_{e}$ appearance}
but no {\color{red}$\nu_{\mu}$ disappearance}\\
\vspace{0.2cm}
{\bf Severe tension between datasets} in a 3+1 framework\\
\vspace{0.2cm}
Tension relieved somewhat with more complex models, but...\\
\vspace{0.2cm}
However the implications are just too important to ignore.\\
}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[plain,c]
\begin{center}
{\Large To address the question of the \\
potential existence of eV-scale sterile neutrino (or other BSM physics)\\
we need data from experiments\\ with {\bf compelling [*]} sensitivity}\\
\vspace{2cm}
[*] The definition of {\em compelling} is subjective. In my view, {\bf $\sim$10$\sigma$ exclusion} of the allowed range is needed
by proposals likely to produce the data to settle the issue. Such proposals exist.
\end{center}
\end{frame}
\begin{frame}[plain,c]
\begin{center}
Several new theoretical ideas are put forward\\
\vspace{0.2cm}
\includegraphics[width=0.90\textwidth]{./images/beyond3nu/new_models}
\end{center}
\end{frame}
\begin{frame}[t]{Future searches}
\begin{itemize}
\item Accelerator facilities
\item Source experiments
\item Reactor experiments
\end{itemize}
\end{frame}
\begin{frame}[t]{Future accelerator based projects}
\begin{itemize}
\item {\bf $\pi$,$\mu$ decay at rest}
\begin{itemize}
\item OscSNS, JPARC MLF
\end{itemize}
\item {\bf Isotope decay at rest}
\begin{itemize}
\item IsoDAR@KamLAND
\end{itemize}
\item {\bf $\pi$,K decay in flight}
\begin{itemize}
\item LAr1-ND, MicroBooNE, ICARUS@FNAL
\end{itemize}
\item {\bf $\mu$ decay in flight}
\begin{itemize}
\item $\nu$Storm
\end{itemize}
\end{itemize}
% \begin{table}[ht]
% \centering
% \begin{tabular}{| c | c | c | c |}
% \hline
% Source & Project & Primary & Other \\
% & & channel & channels \\
% \hline
% $\pi$,$\mu$ decay at rest & OscSNS & $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ & \\
% $\pi$,$\mu$,K decay at rest & JPARC MLF & & \\
% Isotope decay at rest & IsoDAR@KamLAND & & \\
% $\pi$,K decay in flight & LAr1-ND & & \\
% $\pi$,K decay in flight & MicroBooNE & & \\
% $\pi$,K decay in flight & ICARUS@FNAL & & \\
% $\mu$ decay in flight & $\nu$Storm & & \\
% \hline
% \end{tabular}
% \end{table}
\end{frame}
\begin{frame}[t]{Future reactor projects}
\centering
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{itemize}
{\scriptsize
\item New experiments, at very short baselines, close to a single (research) reactor core
\item Challenging environment:
Very short baseline (reactor backgrounds) and shallow
depths (cosmic backgrounds).\\
}
\end{itemize}
\end{column}
\begin{column}{0.50\textwidth}
\includegraphics[width=0.90\textwidth]{./images/beyond3nu/future/vsbn_reactor_map.png}
\end{column}
\end{columns}
\begin{columns}[t]
\begin{column}{0.50\textwidth}
\includegraphics[width=0.90\textwidth]{./images/beyond3nu/future/vsbn_reactor_tab1.png}
\end{column}
\begin{column}{0.50\textwidth}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/future/vsbn_reactor_tab2.png}
\end{column}
\end{columns}
{\scriptsize \color{blue}[schematics from David Lhuillier, Neutrino 2014 conference, Boston]}
\end{frame}
\begin{frame}[t]{Future neutrino source projects}
\centering
\includegraphics[width=0.88\textwidth]{./images/beyond3nu/future/hot_source_tab.png}\\
{\scriptsize \color{blue}[Barbara Caccianiga, Neutrino 2014 conference, Boston]}
\end{frame}
\begin{frame}[t]{Future accelerator-based projects: $\pi$ DAR neutrinos}
Try to solve the LSND anomaly with an improved LSND-style experiment: OscSNS
{\color{blue}[The OscSNS White Paper, arXiv:1307.7097]}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{itemize}
{\scriptsize
\item Proposed experiment using the 1.4-MW 1-GeV proton beam at
the Oak Ridge Spallation Neutron Source.
\item 2.2$\times$10$^{23}$ protons/yr $\rightarrow$
2.8$\times$10$^{22}$ $\nu$/yr
\item Short-pulses (695 ns) $\rightarrow$ reduced cosmic-ray bkg and to separate
neutrinos from $\pi^{+}$ and $\mu^{+}$ decay.
\item Cylindrical detector 60 m away from the beam stop,
filled with 886 tonnes (450 tonnes fiducial)
mineral oil and instrumented with 350 8-inch photomultiplier tubes (25\% coverage).
}
\end{itemize}
\end{column}
\begin{column}{0.50\textwidth}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/future/oscsns_detector.png}
\end{column}
\end{columns}
\begin{center}
{\scriptsize
Similar experiment is being proposed at J-PARC (Japan)
{\color{blue}[Harada et al, arXiv:1310.1437]}
}
\end{center}
\end{frame}
\begin{frame}[t]{Future accelerator-based projects: $\pi$ DAR neutrinos}
Try to solve the LSND anomaly with an improved LSND-style experiment: OscSNS
{\color{blue}[The OscSNS White Paper, arXiv:1307.7097]}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{itemize}
\item {\bf $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ }\\
{\scriptsize
Prompt $e^{+}$ signal ({\color{red}$\bar{\nu}_{e}$ + p $\rightarrow$ $e^{+}$ + n})
followed by a correlated signal from n capture ({\color{red}n + p $\rightarrow$ d + $\gamma$} (2.2 eV))\\
}
\item {\bf $\nu_{\mu} \rightarrow \nu_{e}$ }\\
{\scriptsize
Monoenergetic 12.5 MeV $e^{-}$
({\color{red}$\nu_{e}+^{12}C \rightarrow e^{-}+^{12}N$})
followed by $e^{+}$ from the $\beta$-decay of $^{12}N$.
}
\item {\bf $\nu_{\mu}$ disappearance }\\
{\scriptsize
15.11 MeV $\gamma$ from {\color{red}$\nu_{\mu}C \rightarrow \nu_{\mu}C^{*}$}
}
\item {\bf $\nu_{e}$ disappearance }\\
{\scriptsize
{\color{red}$\nu_{e}+^{12}C \rightarrow e^{-}+^{12}N$}
followed by $e^{+}$ from the $\beta$-decay of $^{12}N$.
}
\end{itemize}
\end{column}
\begin{column}{0.50\textwidth}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/future/oscsns_sensitivity.png}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[t]{Future accelerator-based projects: Isotope DAR neutrinos}
IsoDAR experiment:\\
Injector cyclotron setup + kton-scale scintillator-based detector
\begin{columns}
\begin{column}{0.50\textwidth}
\includegraphics[width=0.75\textwidth]{./images/beyond3nu/future/isodar1.png}\\
{\scriptsize \color{blue}[adapted from J.Spitz, Neutrino 2014, Boston]}
\end{column}
\begin{column}{0.50\textwidth}
\includegraphics[width=0.80\textwidth]{./images/beyond3nu/future/isodar_flux.png}\\
\includegraphics[width=0.80\textwidth]{./images/beyond3nu/future/isodar_wiggles.png}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[t]{Future accelerator-based projects: Isotope DAR neutrinos}
\centering
\includegraphics[width=0.96\textwidth]{./images/beyond3nu/future/isodar_sensitivity.png}
\end{frame}
\begin{frame}[t]{Future accelerator-based projects: $\mu$ DIF neutrinos}
\begin{columns}[t]
\begin{column}{0.50\textwidth}
{\scriptsize
Entry-level neutrino factory {\color{blue}[FERMILAB-PROPOSAL-1028]}:
\begin{itemize}
{\scriptsize
\item $\nu_{e}$ and $\nu_{\mu}$ beam from the decay of a stored muon beam
\item Injecting 5 GeV pions into a muon storage ring
\item Straight section of the ring is 185 m
\item Pions that do not decay prior to first bent are removed
\item Ring circulated muons with momenta of 3.8 GeV/c ($\pm$10\% momentum acceptance)
\item 2$\times 10^{18}$ usefull muon decays (in the straight towards the detector)
per $10^{21}$ protons on target.\\
}
\end{itemize}
}
\includegraphics[width=0.99\textwidth]{./images/beyond3nu/future/nustorm.png}
\end{column}
\begin{column}{0.50\textwidth}
\centering
{\bf 10$\sigma$ sensitivity to the LSND+MiniBooNE anomaly} "with conservative systematics"\\
\vspace{0.2cm}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/future/nustorm_sensitivity.png}\\
{\scriptsize \color{blue}[Phys.Rev. D89 (2014) 071301]}\\
\end{column}
\end{columns}
\end{frame}
\begin{frame}[t]{Future accelerator-based projects: $\pi$,K DIF neutrinos}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/beyond3nu/sbn_1.png}\\
\end{center}
\end{frame}
\begin{frame}[t]{Future accelerator-based projects: $\pi$,K DIF neutrinos}
{\small
A definitive $>$5 $\sigma$ test of current anomalies is possible at SBN.\\
Sensitivity is boosted by superb LArTPC imaging capabilities, and
multiple identical detectors at different baselines.\\
}
\begin{columns}[T]
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/beyond3nu/sbn_a}
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[t]{Future accelerator-based projects: $\pi$,K DIF neutrinos}
{\small
A definitive $>$5 $\sigma$ test of current anomalies is possible at SBN.\\
Sensitivity is boosted by superb LArTPC imaging capabilities, and
multiple identical detectors at different baselines.\\
}
\begin{columns}[T]
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/beyond3nu/sbn_b}
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/beyond3nu/sbn_c}
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
% \begin{frame}{What to read}
%
% {\color{magenta} Add in next revision}
%
% \end{frame}