-
Notifications
You must be signed in to change notification settings - Fork 0
/
MianLT
159 lines (144 loc) · 6.72 KB
/
MianLT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
%% this code is simulation of Lorenz96 using Runge-Kutta method
% this code together with Lorenz96RK_LT.m file are dedicated for
% <Data Assimilation> Class as a final project test withou any
% conflict of interest; Supervisor: GuoCan Wu, GCESS of BNU
% Author: Teng Li@20160702; Contact: [email protected]
%% construct initial value and parameter set
clear;
global nx dt;
nx = 40; % 40 variable distributed in a cycle
dt = 0.05; % time steps to integral in R_K function
Ftrue = 8; % to generate true state
Ffore = 6; % to forecast in assimilation
size = 30; % ensemble size in EnKF filter
initX = zeros(40, 1);
initX(1:40) = Ftrue; % initial condition
initX(20) = 1.001*Ftrue;
pertb = 0.2; % forecast pertubation's std
obseError = 1; % observation error's std
finalTime = 2000; % the last time step 2000
obseFreq = 1/4; % observe once for every 4 forecast
Rspatial = zeros(40); % spatial correlation matrix to localization
for ii = 1:40
for jj = 1:40
tt = min(abs(ii-jj),40 - abs(ii-jj));
Rspatial(ii,jj) = 0.5^tt;
end
end
clear ii jj tt
% imagesc(Rspatial)
trueState = zeros(nx, finalTime);
foreEnse = zeros(nx, finalTime, size);
foreEnseInf = foreEnse;
foreMean = trueState;
foreMeanInf = trueState;
obse = zeros(nx, finalTime*obseFreq);
assiEnse = zeros(nx, finalTime*obseFreq, size);
assiEnseInf = assiEnse;
P = zeros(nx, nx, finalTime*obseFreq);
PInf = P;
diff = obse;
diffij = assiEnse;
diffInf = obse;
diffijInf = assiEnse;
L = zeros(2, finalTime*obseFreq); % Max Likelihood with lamda = 1 or min
lamdaMin = zeros(500,1);
%% constuct true state and observation with error;
% 1st method to generate obseError, plus RspatialRoot*obseError*randn(40,1)
% separately every obseTime, Matrix Rooting using SVD of lamda rooting.
% RspatialRoot = sqrtm(Rspatial);
% 2nd method to generate obseError, plus multi-normal random matrix
% holistically, MengLiu told me he used normrnd function?
obseErrorAll = mvnrnd(zeros(1,40),Rspatial,500)';
for time = 1:finalTime
if time == 1
trueState(:,time) = LorenzRK_LT(Ftrue, initX);
else
trueState(:,time) = LorenzRK_LT(Ftrue,trueState(:,time-1));
if mod(time, 4) == 0
obse(:,time*obseFreq) = trueState(:, time) + obseErrorAll(:, time*obseFreq);
end
end
end
%% EnKF iteration begin! 1 st part is about forecast without assimilation
for time = 1:finalTime
if time == 1
% forePertb = pertb*randn(nx, size);
% foreTemp = LorenzRK_LT(Ffore, initX)';
foreEnse(:,time,:) = bsxfun(@plus,pertb*randn(nx, size), LorenzRK_LT(Ffore, initX));
foreMean(:,time) = mean(squeeze(foreEnse(:,time,:)),2);
foreEnseInf(:,time, :) = foreEnse(:,time,:);
foreMeanInf(:,time) = foreMean(:,time);
else
foreEnse(:,time,:) = bsxfun(@plus,pertb * randn(nx, size), ...
LorenzRK_LT(Ffore, foreMean(:, time-1)));
foreMean(:,time) = mean(squeeze(foreEnse(:,time,:)),2);
foreEnseInf(:, time, :) = bsxfun(@plus,pertb * randn(nx, size), ...
LorenzRK_LT(Ffore, foreMeanInf(:, time-1)));
foreMeanInf(:, time) = mean(squeeze(foreEnseInf(:,time,:)),2);
% these disp()s are for debugging, which can be deleted them if you want.
% disp(time);
% disp(norm(trueState(:,time) - foreMean(:,time)));
% disp(norm(trueState(:,time) - foreMeanInf(:,time)));
% disp(norm(squeeze(foreEnseInf(:,time, :) - foreEnse(:,time,:))));
%% Here comes the true essense of EnKF:2nd part is inplementation of diagram.
if mod(time, 4) == 0
diff(:,time*obseFreq) = obse(:,time*obseFreq) - foreMean(:,time);
diffij(:,time*obseFreq,:) = bsxfun(@minus,obse(:,time*obseFreq),...
squeeze(foreEnse(:, time,:))) + obseError*randn(40, 30);
diffInf(:,time*obseFreq) = obse(:,time*obseFreq) - foreMeanInf(:,time);
diffijInf(:,time*obseFreq,:) = bsxfun(@minus,obse(:,time*obseFreq),...
squeeze(foreEnseInf(:, time,:))) + obseError*randn(40, 30);
foreError = bsxfun(@minus, squeeze(foreEnse(:,time,:)),foreMean(:, time));
P(:,:,time*obseFreq) = foreError * foreError'/ (size -1);
foreErrorInf = bsxfun(@minus, squeeze(foreEnseInf(:,time,:)),foreMeanInf(:, time));
PInf(:,:,time*obseFreq) = foreErrorInf *foreErrorInf' / (size-1);
%% without inflation which means lamda = 1
L(1, time*obseFreq) = log(det(P(:,:,time*obseFreq) + Rspatial))...
+ diff(:,time*obseFreq)'* inv(P(:,:,time*obseFreq) + Rspatial)*diff(:,time*obseFreq);
temp1 = P(:,:,time*obseFreq);
assiEnse(:,time*obseFreq,:) = squeeze(foreEnse(:,time,:)) + ...
temp1 * inv(temp1 +Rspatial) * squeeze(diffij(:,time*obseFreq,:));
foreMean(:,time) = mean(squeeze(assiEnse(:,time*obseFreq,:)),2);
% with inflation requite optimize lamda
FunOptm = @(lamda)(log(det(lamda * PInf(:,:,time*obseFreq) + Rspatial)) + ...
diffInf(:,time*obseFreq)' * inv(lamda * PInf(:,:,time*obseFreq) + Rspatial) * diffInf(:,time*obseFreq));
[lamdaMin(time*obseFreq), L(2, time*obseFreq)] = fminbnd(FunOptm, 0,100);
% Question: how can i define the search inteval of optimazed
% function to find the exact lamda without priori knowledge?
temp2 = lamdaMin(time*obseFreq) * PInf(:,:,time*obseFreq);
assiEnseInf(:, time*obseFreq,:) = squeeze(foreEnseInf(:,time,:)) + ...
temp2 * inv(temp2 + Rspatial) * squeeze(diffijInf(:, time*obseFreq,:));
foreMeanInf(:,time) = mean(squeeze(assiEnseInf(:,time*obseFreq,:)),2);
% temp2 - temp1
end
end
end
%% validation RMSE and plot
rmse1 = sqrt(sum((trueState - foreMean).^2)/nx);
rmse2 = sqrt(sum((trueState - foreMeanInf).^2)/nx);
plot(rmse1)
hold on
plot(rmse2)
script1 = ['Mean RMSE of EnKF with inflation is ',num2str(mean(rmse2))];
script2 = ['comparing with that of ',num2str(mean(rmse1)),' without inflation'];
text(300,8,script1);
text(300,7.5,script2)
xlabel('TimeSteps from 1 to 2000')
ylabel('RMSE')
title('EnKalman Filter RMSE with & without inflation')
legend('No-Inf','With Inf')
figure(2)
plot(L(1,:))
% semilogy(L(1,:));
hold on
plot(L(2,:));
% semilogy(L(2,:));
script1 = ['Mean Likelihood of EnKF with inflation is ',num2str(mean(L(2,:)))];
script2 = ['comparing with that of ', num2str(mean(L(1,:))), 'without inflation'];
text(70,2700,script1);
text(70,2500,script2)
xlabel('TimeSteps from 1 to 500')
ylabel('Max Likelihood')
title('-2*ln(Likelihood) with & wiouth inflation')
legend('No-Inf','With Inf')