forked from real-stanford/diffusion_policy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_real_robot.py
418 lines (368 loc) · 18 KB
/
eval_real_robot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"""
Usage:
(robodiff)$ python eval_real_robot.py -i <ckpt_path> -o <save_dir> --robot_ip <ip_of_ur5>
================ Human in control ==============
Robot movement:
Move your SpaceMouse to move the robot EEF (locked in xy plane).
Press SpaceMouse right button to unlock z axis.
Press SpaceMouse left button to enable rotation axes.
Recording control:
Click the opencv window (make sure it's in focus).
Press "C" to start evaluation (hand control over to policy).
Press "Q" to exit program.
================ Policy in control ==============
Make sure you can hit the robot hardware emergency-stop button quickly!
Recording control:
Press "S" to stop evaluation and gain control back.
"""
# %%
import time
from multiprocessing.managers import SharedMemoryManager
import click
import cv2
import numpy as np
import torch
import dill
import hydra
import pathlib
import skvideo.io
from omegaconf import OmegaConf
import scipy.spatial.transform as st
from diffusion_policy.real_world.real_env import RealEnv
from diffusion_policy.real_world.spacemouse_shared_memory import Spacemouse
from diffusion_policy.common.precise_sleep import precise_wait
from diffusion_policy.real_world.real_inference_util import (
get_real_obs_resolution,
get_real_obs_dict)
from diffusion_policy.common.pytorch_util import dict_apply
from diffusion_policy.workspace.base_workspace import BaseWorkspace
from diffusion_policy.policy.base_image_policy import BaseImagePolicy
from diffusion_policy.common.cv2_util import get_image_transform
OmegaConf.register_new_resolver("eval", eval, replace=True)
@click.command()
@click.option('--input', '-i', required=True, help='Path to checkpoint')
@click.option('--output', '-o', required=True, help='Directory to save recording')
@click.option('--robot_ip', '-ri', required=True, help="UR5's IP address e.g. 192.168.0.204")
@click.option('--match_dataset', '-m', default=None, help='Dataset used to overlay and adjust initial condition')
@click.option('--match_episode', '-me', default=None, type=int, help='Match specific episode from the match dataset')
@click.option('--vis_camera_idx', default=0, type=int, help="Which RealSense camera to visualize.")
@click.option('--init_joints', '-j', is_flag=True, default=False, help="Whether to initialize robot joint configuration in the beginning.")
@click.option('--steps_per_inference', '-si', default=6, type=int, help="Action horizon for inference.")
@click.option('--max_duration', '-md', default=60, help='Max duration for each epoch in seconds.')
@click.option('--frequency', '-f', default=10, type=float, help="Control frequency in Hz.")
@click.option('--command_latency', '-cl', default=0.01, type=float, help="Latency between receiving SapceMouse command to executing on Robot in Sec.")
def main(input, output, robot_ip, match_dataset, match_episode,
vis_camera_idx, init_joints,
steps_per_inference, max_duration,
frequency, command_latency):
# load match_dataset
match_camera_idx = 0
episode_first_frame_map = dict()
if match_dataset is not None:
match_dir = pathlib.Path(match_dataset)
match_video_dir = match_dir.joinpath('videos')
for vid_dir in match_video_dir.glob("*/"):
episode_idx = int(vid_dir.stem)
match_video_path = vid_dir.joinpath(f'{match_camera_idx}.mp4')
if match_video_path.exists():
frames = skvideo.io.vread(
str(match_video_path), num_frames=1)
episode_first_frame_map[episode_idx] = frames[0]
print(f"Loaded initial frame for {len(episode_first_frame_map)} episodes")
# load checkpoint
ckpt_path = input
payload = torch.load(open(ckpt_path, 'rb'), pickle_module=dill)
cfg = payload['cfg']
cls = hydra.utils.get_class(cfg._target_)
workspace = cls(cfg)
workspace: BaseWorkspace
workspace.load_payload(payload, exclude_keys=None, include_keys=None)
# hacks for method-specific setup.
action_offset = 0
delta_action = False
if 'diffusion' in cfg.name:
# diffusion model
policy: BaseImagePolicy
policy = workspace.model
if cfg.training.use_ema:
policy = workspace.ema_model
device = torch.device('cuda')
policy.eval().to(device)
# set inference params
policy.num_inference_steps = 16 # DDIM inference iterations
policy.n_action_steps = policy.horizon - policy.n_obs_steps + 1
elif 'robomimic' in cfg.name:
# BCRNN model
policy: BaseImagePolicy
policy = workspace.model
device = torch.device('cuda')
policy.eval().to(device)
# BCRNN always has action horizon of 1
steps_per_inference = 1
action_offset = cfg.n_latency_steps
delta_action = cfg.task.dataset.get('delta_action', False)
elif 'ibc' in cfg.name:
policy: BaseImagePolicy
policy = workspace.model
policy.pred_n_iter = 5
policy.pred_n_samples = 4096
device = torch.device('cuda')
policy.eval().to(device)
steps_per_inference = 1
action_offset = 1
delta_action = cfg.task.dataset.get('delta_action', False)
else:
raise RuntimeError("Unsupported policy type: ", cfg.name)
# setup experiment
dt = 1/frequency
obs_res = get_real_obs_resolution(cfg.task.shape_meta)
n_obs_steps = cfg.n_obs_steps
print("n_obs_steps: ", n_obs_steps)
print("steps_per_inference:", steps_per_inference)
print("action_offset:", action_offset)
with SharedMemoryManager() as shm_manager:
with Spacemouse(shm_manager=shm_manager) as sm, RealEnv(
output_dir=output,
robot_ip=robot_ip,
frequency=frequency,
n_obs_steps=n_obs_steps,
obs_image_resolution=obs_res,
obs_float32=True,
init_joints=init_joints,
enable_multi_cam_vis=True,
record_raw_video=True,
# number of threads per camera view for video recording (H.264)
thread_per_video=3,
# video recording quality, lower is better (but slower).
video_crf=21,
shm_manager=shm_manager) as env:
cv2.setNumThreads(1)
# Should be the same as demo
# realsense exposure
env.realsense.set_exposure(exposure=120, gain=0)
# realsense white balance
env.realsense.set_white_balance(white_balance=5900)
print("Waiting for realsense")
time.sleep(1.0)
print("Warming up policy inference")
obs = env.get_obs()
with torch.no_grad():
policy.reset()
obs_dict_np = get_real_obs_dict(
env_obs=obs, shape_meta=cfg.task.shape_meta)
obs_dict = dict_apply(obs_dict_np,
lambda x: torch.from_numpy(x).unsqueeze(0).to(device))
result = policy.predict_action(obs_dict)
action = result['action'][0].detach().to('cpu').numpy()
assert action.shape[-1] == 2
del result
print('Ready!')
while True:
# ========= human control loop ==========
print("Human in control!")
state = env.get_robot_state()
target_pose = state['TargetTCPPose']
t_start = time.monotonic()
iter_idx = 0
while True:
# calculate timing
t_cycle_end = t_start + (iter_idx + 1) * dt
t_sample = t_cycle_end - command_latency
t_command_target = t_cycle_end + dt
# pump obs
obs = env.get_obs()
# visualize
episode_id = env.replay_buffer.n_episodes
vis_img = obs[f'camera_{vis_camera_idx}'][-1]
match_episode_id = episode_id
if match_episode is not None:
match_episode_id = match_episode
if match_episode_id in episode_first_frame_map:
match_img = episode_first_frame_map[match_episode_id]
ih, iw, _ = match_img.shape
oh, ow, _ = vis_img.shape
tf = get_image_transform(
input_res=(iw, ih),
output_res=(ow, oh),
bgr_to_rgb=False)
match_img = tf(match_img).astype(np.float32) / 255
vis_img = np.minimum(vis_img, match_img)
text = f'Episode: {episode_id}'
cv2.putText(
vis_img,
text,
(10,20),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.5,
thickness=1,
color=(255,255,255)
)
cv2.imshow('default', vis_img[...,::-1])
key_stroke = cv2.pollKey()
if key_stroke == ord('q'):
# Exit program
env.end_episode()
exit(0)
elif key_stroke == ord('c'):
# Exit human control loop
# hand control over to the policy
break
precise_wait(t_sample)
# get teleop command
sm_state = sm.get_motion_state_transformed()
# print(sm_state)
dpos = sm_state[:3] * (env.max_pos_speed / frequency)
drot_xyz = sm_state[3:] * (env.max_rot_speed / frequency)
if not sm.is_button_pressed(0):
# translation mode
drot_xyz[:] = 0
else:
dpos[:] = 0
if not sm.is_button_pressed(1):
# 2D translation mode
dpos[2] = 0
drot = st.Rotation.from_euler('xyz', drot_xyz)
target_pose[:3] += dpos
target_pose[3:] = (drot * st.Rotation.from_rotvec(
target_pose[3:])).as_rotvec()
# clip target pose
target_pose[:2] = np.clip(target_pose[:2], [0.25, -0.45], [0.77, 0.40])
# execute teleop command
env.exec_actions(
actions=[target_pose],
timestamps=[t_command_target-time.monotonic()+time.time()])
precise_wait(t_cycle_end)
iter_idx += 1
# ========== policy control loop ==============
try:
# start episode
policy.reset()
start_delay = 1.0
eval_t_start = time.time() + start_delay
t_start = time.monotonic() + start_delay
env.start_episode(eval_t_start)
# wait for 1/30 sec to get the closest frame actually
# reduces overall latency
frame_latency = 1/30
precise_wait(eval_t_start - frame_latency, time_func=time.time)
print("Started!")
iter_idx = 0
term_area_start_timestamp = float('inf')
perv_target_pose = None
while True:
# calculate timing
t_cycle_end = t_start + (iter_idx + steps_per_inference) * dt
# get obs
print('get_obs')
obs = env.get_obs()
obs_timestamps = obs['timestamp']
print(f'Obs latency {time.time() - obs_timestamps[-1]}')
# run inference
with torch.no_grad():
s = time.time()
obs_dict_np = get_real_obs_dict(
env_obs=obs, shape_meta=cfg.task.shape_meta)
obs_dict = dict_apply(obs_dict_np,
lambda x: torch.from_numpy(x).unsqueeze(0).to(device))
result = policy.predict_action(obs_dict)
# this action starts from the first obs step
action = result['action'][0].detach().to('cpu').numpy()
print('Inference latency:', time.time() - s)
# convert policy action to env actions
if delta_action:
assert len(action) == 1
if perv_target_pose is None:
perv_target_pose = obs['robot_eef_pose'][-1]
this_target_pose = perv_target_pose.copy()
this_target_pose[[0,1]] += action[-1]
perv_target_pose = this_target_pose
this_target_poses = np.expand_dims(this_target_pose, axis=0)
else:
this_target_poses = np.zeros((len(action), len(target_pose)), dtype=np.float64)
this_target_poses[:] = target_pose
this_target_poses[:,[0,1]] = action
# deal with timing
# the same step actions are always the target for
action_timestamps = (np.arange(len(action), dtype=np.float64) + action_offset
) * dt + obs_timestamps[-1]
action_exec_latency = 0.01
curr_time = time.time()
is_new = action_timestamps > (curr_time + action_exec_latency)
if np.sum(is_new) == 0:
# exceeded time budget, still do something
this_target_poses = this_target_poses[[-1]]
# schedule on next available step
next_step_idx = int(np.ceil((curr_time - eval_t_start) / dt))
action_timestamp = eval_t_start + (next_step_idx) * dt
print('Over budget', action_timestamp - curr_time)
action_timestamps = np.array([action_timestamp])
else:
this_target_poses = this_target_poses[is_new]
action_timestamps = action_timestamps[is_new]
# clip actions
this_target_poses[:,:2] = np.clip(
this_target_poses[:,:2], [0.25, -0.45], [0.77, 0.40])
# execute actions
env.exec_actions(
actions=this_target_poses,
timestamps=action_timestamps
)
print(f"Submitted {len(this_target_poses)} steps of actions.")
# visualize
episode_id = env.replay_buffer.n_episodes
vis_img = obs[f'camera_{vis_camera_idx}'][-1]
text = 'Episode: {}, Time: {:.1f}'.format(
episode_id, time.monotonic() - t_start
)
cv2.putText(
vis_img,
text,
(10,20),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.5,
thickness=1,
color=(255,255,255)
)
cv2.imshow('default', vis_img[...,::-1])
key_stroke = cv2.pollKey()
if key_stroke == ord('s'):
# Stop episode
# Hand control back to human
env.end_episode()
print('Stopped.')
break
# auto termination
terminate = False
if time.monotonic() - t_start > max_duration:
terminate = True
print('Terminated by the timeout!')
term_pose = np.array([ 3.40948500e-01, 2.17721816e-01, 4.59076878e-02, 2.22014183e+00, -2.22184883e+00, -4.07186655e-04])
curr_pose = obs['robot_eef_pose'][-1]
dist = np.linalg.norm((curr_pose - term_pose)[:2], axis=-1)
if dist < 0.03:
# in termination area
curr_timestamp = obs['timestamp'][-1]
if term_area_start_timestamp > curr_timestamp:
term_area_start_timestamp = curr_timestamp
else:
term_area_time = curr_timestamp - term_area_start_timestamp
if term_area_time > 0.5:
terminate = True
print('Terminated by the policy!')
else:
# out of the area
term_area_start_timestamp = float('inf')
if terminate:
env.end_episode()
break
# wait for execution
precise_wait(t_cycle_end - frame_latency)
iter_idx += steps_per_inference
except KeyboardInterrupt:
print("Interrupted!")
# stop robot.
env.end_episode()
print("Stopped.")
# %%
if __name__ == '__main__':
main()