-
Notifications
You must be signed in to change notification settings - Fork 4
/
isec_discretization.rmd
258 lines (199 loc) · 6.31 KB
/
isec_discretization.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
---
title: "Don't use multimodel averaging to understand multifactorial systems"
output:
beamer_presentation:
slide_level: 2
keep_tex: true
includes:
in_header: ./header.tex
after_body: ./suffix.tex
author: "Ben Bolker \\newline McMaster University"
date: "3 July 2018"
bibliography: discrete.bib
csl: reflist2.csl
---
<!-- tex hacks required: remove empty frame at beginning; break line in title (Burnham ref; add \framebreak manually to refs (ugh) -->
<!--
apa.csl is a slightly hacked version of APA
(modified for "et al" after 2 authors in text)
-->
<!-- blockquote:
https://css-tricks.com/snippets/css/simple-and-nice-blockquote-styling/ -->
<!-- center:
https://www.w3schools.com/howto/howto_css_image_center.asp -->
<!-- .refs is style for reference page (small text) -->
<style>
.refs {
font-size: 14px;
}
.sm_block {
font-size: 20px;
}
h2 {
color: #3399ff;
}
h3 {
color: #3399ff;
}
.title-slide {
background-color: #55bbff;
}
blockquote {
background: #f9f9f9;
border-left: 10px solid #ccc;
margin: 1.5em 10px;
padding: 0.5em 10px;
quotes: "\201C""\201D"
}
blockquote:before {
color: #ccc;
content: open-quote;
font-size: 4em;
line-height: 0.1em;
margin-right: 0.25em;
vertical-align: -0.4em;
}
blockquote p {
display: inline;
}
.center {
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
}
</style>
<!-- content: url(https://i.creativecommons.org/l/by-sa/4.0/88x31.png)
>
<!-- Limit image width and height -->
<style type="text/css">
img {
max-height: 560px;
max-width: 700px;
}
div#before-column p.forceBreak {
break-before: column;
}
div#after-column p.forceBreak {
break-after: column;
}
</style>
```{r setup,echo=FALSE,message=FALSE}
library("ggplot2"); theme_set(theme_classic())
library("reshape2")
library("ggExtra")
library("MASS")
library("knitr")
opts_chunk$set(echo=FALSE,fig.width=4,fig.height=4,out.width=400)
```
## acknowledgements
money: NSERC
ideas: Jonathan Dushoff, Marm Kilpatrick, Brian McGill, Daniel Park, Daniel Turek
## what are multifactorial systems?
- many processes contribute to pattern
- quantify *how* each process affects the system,
rather than testing *whether* we can detect its impact
<!--
<blockquote>
... the measure of participation of each [process] must be determined before a satisfactory elucidation can be reached. The full solution therefore involves not only a recognition of multiple participation but an estimate of the measure and mode of each participation ...
</blockquote>
-->
- related:
- Chamberlin's \cemph{method of multiple working hypotheses}
[@raup_method_1995]
- \cemph{tapering effect sizes} [@burnham_model_2002]
This talk is mostly about *inferential* or *scientific* questions
(but also applies to prediction/management)
## what is multimodel averaging (MMA)? \\newline [@burnham_model_2002]
- typical approach
- fit full model; dredge; compute AIC weights
- present table of models with $\Delta$AIC & weights
- compute model-averaged point estimates and CIs
- **many** ways to do it wrong
e.g. @cade_model_2015; @brewer_relative_2016; @galipaud_ecologists_2014
- ... but let's not worry about that now
## why use MMA? {.columns-2 .build}
\begincols
\begincol{0.5\textwidth}
- avoid omitting potentially important predictors
- avoid overfitting
- $\approx$ optimize bias-variance tradeoff
- avoid stepwise approaches and pairwise comparisons
- MMA is a **shrinkage estimator** [@dahlgren_alternative_2010]
\endcol
\begincol{0.5\textwidth}
\pause
\includegraphics[width=\textwidth]{pix/330px-The_Three_Bears_-_Project_Gutenberg_eText_17034.jpg}
\tiny Rackham 1837
\endcol
\endcols
## why *not* use MMA?
three problems:
- conceptual
- computational
- inferential
## conceptual problem: discretization {.build .columns-2}
\begincols
\begincol{0.5\textwidth}
- information-theoretic (IT) approaches often framed as descendants of Chamberlin [@elliott_revisiting_2007]
- but IT focuses on differentiating **discrete** hypotheses/models
- submodels are always straw men
- ¿ does this actually cause problems ?
\endcol
\begincol{0.5\textwidth}
\pause
\includegraphics[width=\textwidth]{pix/eyam_ternary.png}
{\small Estimated contribution of plague transmission modes in Eyam 1665}
\endcol
\endcols
## computational problem: efficiency {.columns-2 .build}
\begincols
\begincol{0.5\textwidth}
\newcommand{\bigO}{{\mathcal{O}}}
- classic MMA requires fitting **lots** of models: $\bigO(2^K K^2 n)$
- more efficient shrinkage estimators:
lasso/ridge/etc.; random forest etc.; Bayesian + regularizing priors
- $\bigO(K^2 n)$ or $\bigO(K n \log(n))$
[@hardy_machine_2017; @louppe_understanding_2014]
(may need to tune shrinkage)
- we do have lots of computers ...
\endcol
\begincol{0.5\textwidth}
\pause
\includegraphics[width=0.75\textwidth]{pix/bitcoin2.pdf}
\endcol
\endcols
## inferential problem: undercoverage {.build}
- various methods for constructing MMA CIs [@burnham_model_2002;@fletcher2012model;@kabaila_model-averaged_2016]
- MMA CIs are generally **too narrow**
[@turek2013frequentist;@kabaila_model-averaged_2016;@dormann_model_2018] but cf. @burnham_model_2002
- general property of shrinkage estimators? e.g. ridge-regression CI width $\geq$ least-squares CI [@obenchain_classical_1977]
- **no free lunch**; can we ever gain certainty by shrinkage?
\pause
\includegraphics[width=0.7\textwidth]{pix/dormann_coverage.png}
@dormann_model_2018, Figure 5
## possible reactions
- "MMA CIs only undercover a little bit"
- then they're not good CIs; increased certainty is an illusion
- "I'm only interested in prediction"
- really?
- do you want reliable CIs on your predictions?
- "MMA is the only shrinkage estimator available for my problem"
- let's work on this
## conclusions: what should you do?
- for **inference**:
- use the full model
- *a priori* model reduction [@harrell_regression_2001]
- for **prediction**:
- beware CIs from shrinkage estimates
- help develop efficient, principled shrinkage estimation methods
- use non-neutral, informative Bayesian priors?
[@crome_novel_1996]
##
\url{http://github.com/bbolker/discretization}
\begin{center}
\includegraphics[width=0.75\textwidth]{pix/changemymind.jpg}
{\small https://imgflip.com}
\end{center}
## References {.refs .columns-2 .allowframebreaks}
\tiny