Memcached
内部有hash表,各种统计信息,工作线程,网络,连接,内存结构等,在memcached启动时(执行main函数),会对这些资源进行初始化的,网络和内存的初始化操作放到后续分析,这次分析hash表,统计信息,工作线程,网络连接的初始化过程。
1 hash表的初始化
//hash表的初始化,传入的参数是启动时传入的
assoc_init(settings.hashpower_init);
//hashsize的实现
#define hashsize(n) ((ub4)1<<(n))
//主hash表结构定义,在hash表扩容时,会有次hash表,所以有主次hash表区分,该结构是指针的指针,也即相当于数组指针
static item** primary_hashtable = 0;
void assoc_init(const int hashtable_init) {
if (hashtable_init) {
//如果设置了初始化参数,则按设置的参数进行初始化
hashpower = hashtable_init;
}
//hashpower的默认值为16,如果未设置新值,则按默认值进行初始化
primary_hashtable = calloc(hashsize(hashpower), sizeof(void *));
if (! primary_hashtable) {
fprintf(stderr, "Failed to init hashtable.\n");
exit(EXIT_FAILURE);
}
STATS_LOCK();//全局统计信息加锁,保证数据同步
stats.hash_power_level = hashpower;
stats.hash_bytes = hashsize(hashpower) * sizeof(void *);
STATS_UNLOCK();
}
2 统计信息的初始化
Memcached
内部有很多全局的统计信息,用于实时获取各个资源的使用情况,后面将会看到,所有对统计信息的更新都需要加锁,而这些信息的更新是和Memcached的操作次数同数量级的,所以,在一定程度来说,这些统计信息对性能有影响。
stats结构是对统计信息的一个抽象,各个字段都比较好理解,不做解释。
struct stats {
pthread_mutex_t mutex;
unsigned int curr_items;
unsigned int total_items;
uint64_t curr_bytes;
unsigned int curr_conns;
unsigned int total_conns;
uint64_t rejected_conns;
unsigned int reserved_fds;
unsigned int conn_structs;
uint64_t get_cmds;
uint64_t set_cmds;
uint64_t touch_cmds;
uint64_t get_hits;
uint64_t get_misses;
uint64_t touch_hits;
uint64_t touch_misses;
uint64_t evictions;
uint64_t reclaimed;
time_t started; /* when the process was started */
bool accepting_conns; /* whether we are currently accepting */
uint64_t listen_disabled_num;
unsigned int hash_power_level; /* Better hope it's not over 9000 */
uint64_t hash_bytes; /* size used for hash tables */
bool hash_is_expanding; /* If the hash table is being expanded */
uint64_t expired_unfetched; /* items reclaimed but never touched */
uint64_t evicted_unfetched; /* items evicted but never touched */
bool slab_reassign_running; /* slab reassign in progress */
uint64_t slabs_moved; /* times slabs were moved around */
};
统计信息的初始化也就是对stats变量的一个初始化。
//全局对象的定义
struct stats stats;
//全局变量的初始化,该全局变量在memcached启动之后,一直使用
static void stats_init(void)
{
stats.curr_items = stats.total_items = stats.curr_conns =
stats.total_conns = stats.conn_structs = 0;
stats.get_cmds = stats.set_cmds = stats.get_hits = stats.get_misses =
stats.evictions = stats.reclaimed = 0;
stats.touch_cmds = stats.touch_misses = stats.touch_hits =
stats.rejected_conns = 0;
stats.curr_bytes = stats.listen_disabled_num = 0;
stats.hash_power_level = stats.hash_bytes = stats.hash_is_expanding = 0;
stats.expired_unfetched = stats.evicted_unfetched = 0;
stats.slabs_moved = 0;
stats.accepting_conns = true; /* assuming we start in this state. */
stats.slab_reassign_running = false;
/* make the time we started always be 2 seconds before we really
did, so time(0) - time.started is never zero. if so, things
like 'settings.oldest_live' which act as booleans as well as
values are now false in boolean context... */
process_started = time(0) - 2;
stats_prefix_init();
}
3 工作线程的初始化
Memcached
采用了典型的Master-Worker
的线程模式,Master就是由main线程来充当,而Worker线程则是通过Pthread创建的。
//传入线程个数和libevent的main_base实例
thread_init(settings.num_threads, main_base);
//工作线程初始化
void thread_init(int nthreads, struct event_base *main_base) {
int i;
int power;
//初始化各种锁和条件变量
pthread_mutex_init(&cache_lock, NULL);
pthread_mutex_init(&stats_lock, NULL);
pthread_mutex_init(&init_lock, NULL);
pthread_cond_init(&init_cond, NULL);
pthread_mutex_init(&cqi_freelist_lock, NULL);
cqi_freelist = NULL;
//Memcached对hash桶的锁采用分段锁,按线程个数来分段,默认总共是1<<16个hash桶,而锁的数目是1<<power个
/* Want a wide lock table, but don't waste memory */
if (nthreads < 3) {
power = 10;
} else if (nthreads < 4) {
power = 11;
} else if (nthreads < 5) {
power = 12;
} else {
/* 8192 buckets, and central locks don't scale much past 5 threads */
power = 13;
}
item_lock_count = hashsize(power);
//申请1<<power个pthread_mutex_t锁,保存在item_locks数组。
item_locks = calloc(item_lock_count, sizeof(pthread_mutex_t));
if (! item_locks) {
perror("Can't allocate item locks");
exit(1);
}
//对这些锁进行初始化,这部分可参考APUE的线程部分
for (i = 0; i < item_lock_count; i++) {
pthread_mutex_init(&item_locks[i], NULL);
}
/*创建线程的局部变量,该局部变量的名称为item_lock_type_key,用于保存主hash表所持有的锁的类型
主hash表在进行扩容时,该锁类型会变为全局的锁,否则(不在扩容过程中),则是局部锁*/
pthread_key_create(&item_lock_type_key, NULL);
pthread_mutex_init(&item_global_lock, NULL);
//申请nthreds个工作线程,LIBEVENT_THREAD是Memcached内部对工作线程的一个封装
threads = calloc(nthreads, sizeof(LIBEVENT_THREAD));
if (! threads) {
perror("Can't allocate thread descriptors");
exit(1);
}
/*分发线程的初始化,分发线程的base为main_base
线程id为main线程的线程id*/
dispatcher_thread.base = main_base;
dispatcher_thread.thread_id = pthread_self();
//工作线程的初始化,工作线程和主线程(main线程)是通过pipe管道进行通信的
for (i = 0; i < nthreads; i++) {
int fds[2];
if (pipe(fds)) {//初始化pipe管道
perror("Can't create notify pipe");
exit(1);
}
threads[i].notify_receive_fd = fds[0];//读管道绑定到工作线程的接收消息的描述符
threads[i].notify_send_fd = fds[1];//写管道绑定到工作线程的发送消息的描述符
setup_thread(&threads[i]);//添加工作线程到libevent中
/* Reserve three fds for the libevent base, and two for the pipe */
stats.reserved_fds += 5;//统计信息更新
}
//创建工作线程
for (i = 0; i < nthreads; i++) {
create_worker(worker_libevent, &threads[i]);
}
//等待所有工作线程创建完毕
pthread_mutex_lock(&init_lock);
wait_for_thread_registration(nthreads);
pthread_mutex_unlock(&init_lock);
}
//Memcached内部工作线程的封装
typedef struct {
pthread_t thread_id; //线程ID
struct event_base *base; //libevent的不是线程安全的,每个工作线程持有一个libevent实例,用于pipe管道通信和socket通信
struct event notify_event; //用于监听pipe管道的libevent事件
int notify_receive_fd; //接收pipe管道消息描述符
int notify_send_fd; //发送pipe管道消息描述符
struct thread_stats stats; //每个线程对应的统计信息
struct conn_queue *new_conn_queue; //每个线程都有一个工作队列,主线程接受的连接,挂载到该消息队列中
cache_t *suffix_cache; //后缀cache
uint8_t item_lock_type; //线程操作hash表持有的锁类型,有局部锁和全局锁
} LIBEVENT_THREAD;
//分发线程的封装
typedef struct {
pthread_t thread_id; //线程id
struct event_base *base; //libevent实例
} LIBEVENT_DISPATCHER_THREAD;
//工作线程绑定到libevent实例
static void setup_thread(LIBEVENT_THREAD *me) {
me->base = event_init();//创建libevent实例
if (! me->base) {
fprintf(stderr, "Can't allocate event base\n");
exit(1);
}
//创建管道读的libevent事件,事件的回调函数处理具体的业务信息,关于回调函数的处理,后续分析
event_set(&me->notify_event, me->notify_receive_fd,
EV_READ | EV_PERSIST, thread_libevent_process, me);
event_base_set(me->base, &me->notify_event);//设置libevent实例
//添加事件到libevent中
if (event_add(&me->notify_event, 0) == -1) {
fprintf(stderr, "Can't monitor libevent notify pipe\n");
exit(1);
}
//创建消息队列,用于接受主线程连接
me->new_conn_queue = malloc(sizeof(struct conn_queue));
if (me->new_conn_queue == NULL) {
perror("Failed to allocate memory for connection queue");
exit(EXIT_FAILURE);
}
cq_init(me->new_conn_queue);//消息队列初始化
if (pthread_mutex_init(&me->stats.mutex, NULL) != 0) {
perror("Failed to initialize mutex");
exit(EXIT_FAILURE);
}
//创建线程的后缀cache,没搞懂这个cache有什么作用。
me->suffix_cache = cache_create("suffix", SUFFIX_SIZE, sizeof(char*),
NULL, NULL);
if (me->suffix_cache == NULL) {
fprintf(stderr, "Failed to create suffix cache\n");
exit(EXIT_FAILURE);
}
}
//创建工作线程
static void create_worker(void *(*func)(void *), void *arg) {
pthread_t thread;
pthread_attr_t attr;
int ret;
pthread_attr_init(&attr);//Posix线程部分,线程属性初始化
//通过pthread_create创建线程,线程处理函数是通过外部传入的处理函数为worker_libevent
if ((ret = pthread_create(&thread, &attr, func, arg)) != 0) {
fprintf(stderr, "Can't create thread: %s\n",
strerror(ret));
exit(1);
}
}
//线程处理函数
static void *worker_libevent(void *arg) {
LIBEVENT_THREAD *me = arg;
//默认的hash表的锁为局部锁
me->item_lock_type = ITEM_LOCK_GRANULAR;
pthread_setspecific(item_lock_type_key, &me->item_lock_type);//设定线程的属性
//用于控制工作线程初始化,通过条件变量来控制
register_thread_initialized();
//工作线程的libevent实例启动
event_base_loop(me->base, 0);
return NULL;
}
//阻塞工作线程
static void wait_for_thread_registration(int nthreads) {
while (init_count < nthreads) {
pthread_cond_wait(&init_cond, &init_lock);//在条件变量init_cond上面阻塞,阻塞个数为nthreads-init_count
}
}
//唤醒工作线程
static void register_thread_initialized(void) {
pthread_mutex_lock(&init_lock);
init_count++;
pthread_cond_signal(&init_cond);
pthread_mutex_unlock(&init_lock);
}
//每个线程持有的统计信息
struct thread_stats {
pthread_mutex_t mutex;
uint64_t get_cmds;
uint64_t get_misses;
uint64_t touch_cmds;
uint64_t touch_misses;
uint64_t delete_misses;
uint64_t incr_misses;
uint64_t decr_misses;
uint64_t cas_misses;
uint64_t bytes_read;
uint64_t bytes_written;
uint64_t flush_cmds;
uint64_t conn_yields; /* # of yields for connections (-R option)*/
uint64_t auth_cmds;
uint64_t auth_errors;
struct slab_stats slab_stats[MAX_NUMBER_OF_SLAB_CLASSES];
};
//每个slab的统计信息
struct slab_stats {
uint64_t set_cmds;
uint64_t get_hits;
uint64_t touch_hits;
uint64_t delete_hits;
uint64_t cas_hits;
uint64_t cas_badval;
uint64_t incr_hits;
uint64_t decr_hits;
};
4 连接的初始化
static conn **freeconns;//空闲连接列表
//连接初始化
static void conn_init(void)
{
freetotal = 200;//空闲连接总数
freecurr = 0;//当前空闲的索引
//申请200个空间
if ((freeconns = calloc(freetotal, sizeof(conn *))) == NULL)
{
fprintf(stderr, "Failed to allocate connection structures\n");
}
return;
}