-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
111 lines (95 loc) · 4.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# ------------------------------------------------------------------------
# 3DMOTFormer
# Copyright (c) 2023 Shuxiao Ding. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Pytorch Template Project (https://github.com/victoresque/pytorch-template)
# Copyright (c) 2018 Victor Huang. All Rights Reserved.
# ------------------------------------------------------------------------
import argparse
import collections
import torch
import numpy as np
import base.base_dataloader as module_dataloader
import dataset as module_dataset
import model.loss as module_loss
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
from utils import prepare_device
# fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(config, args):
logger = config.get_logger('train')
# build model architecture, then print to console
model = config.init_obj('arch', module_arch)
logger.info(model)
# prepare for (multi-device) GPU training
device, device_ids = prepare_device(config['n_gpu'])
model = model.to(device)
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# get function handles of loss and metrics
criterion = config.init_obj('loss', module_loss)
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
# lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
if args.eval_only:
val_dataset = config.init_obj('val_dataset', module_dataset,
graph_truncation_dist=config['graph_truncation_dist'])
trainer = Trainer(model=model,
criterion=criterion,
metric_ftns=None,
optimizer=optimizer,
config=config,
device=device,
data_loader=[],
len_epoch=config['trainer']['len_epoch'] if 'len_epoch' in config['trainer'].keys() else None,
valid_dataset=val_dataset,
active_track_thresh=config['trainer']['active_track_thresh'],
lr_scheduler=None)
trainer.val(args.eval_output)
else:
# setup data_loader instances
train_dataset = config.init_obj('train_dataset', module_dataset,
graph_truncation_dist=config['graph_truncation_dist'])
train_dataloader = config.init_obj('train_data_loader', module_dataloader, dataset=train_dataset)
trainer = Trainer(model=model,
criterion=criterion,
metric_ftns=None,
optimizer=optimizer,
config=config,
device=device,
data_loader=train_dataloader,
len_epoch=config['trainer']['len_epoch'] if 'len_epoch' in config['trainer'].keys() else None,
valid_dataset=None,
active_track_thresh=config['trainer']['active_track_thresh'],
lr_scheduler=None)
trainer.train()
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args.add_argument('--eval_only', action='store_true',
help='whether to run in eval only mode')
args.add_argument('-o', '--eval_output', default=None, type=str,
help='Output files of evaluation')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'),
CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;batch_size'),
CustomArgs(['--le', '--len_epoch'], type=int, target='trainer;len_epoch'),
CustomArgs(['--n', '--name'], type=str, target='name'),
]
config = ConfigParser.from_args(args, options)
args = args.parse_args()
main(config, args)