Skip to content

A visualization support tool for advanced hierarchical clustering analysis. MLCut allows cutting dendrograms at multiple heights/levels. In other words, it allows to set multiple local similarity thresholds in potentially large dendrograms. It uses two coordinated views, one for the dentrogram (radial layout), and another for the original multid…

Notifications You must be signed in to change notification settings

avogogias/MLCut

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Instructions:

  1. Clone MLCut (if you use a web server save it in a web directory otherwise look at ** below)
  2. Edit the "scripts/CSV-TSclust-hclust-rjson.r" file to point to your own CSV data file. Note that the first column that contains the names/ids of your data should be named "ID". Column names of the measurement could be anything you like
  3. Execute the R script. You may be asked to install any missing r-packages while running the script. The output will be stored in a JSON file which together with the original CSV file will be used as input to MLCut
  4. Edit the "PATH_TO_JSON" and "PATH_TO_CSV" variables in the first lines of "mlcut.js" to match the path and file names of your own .csv and .json data files
  5. Access index.html with your web browser **

--

** How to configure Chrome so that it allows XMLHttpRequest (file access from files) in the case you don't run a local web server:

a) Create a Shortcut for Chrome

b) Right Click on Shortcut icon

c) Select Properties

d) Select Shortcut tab

e) Add "--allow-file-access-from-files" flag on Target input e.g. Target: "C:\Program Files (x86)\Google\Chrome\chrome.exe" --allow-file-access-from-files

f) -> Click Apply -> Click OK

g) Open index.html using the Chrome shortcut

--

Find our paper in: https://diglib.eg.org/handle/10.2312/cgvc20161288

About

A visualization support tool for advanced hierarchical clustering analysis. MLCut allows cutting dendrograms at multiple heights/levels. In other words, it allows to set multiple local similarity thresholds in potentially large dendrograms. It uses two coordinated views, one for the dentrogram (radial layout), and another for the original multid…

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published