forked from corsix/amx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.c
192 lines (175 loc) · 5.44 KB
/
test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#include "aarch64.h"
#include "emulate.h"
#include <stdio.h>
// Little xoshiro256++ random number generator
static uint64_t s[4];
static void rand_init() {
s[0] = 0x180ec6d33cfd0abaULL;
s[1] = 0xd5a61266f0c9392cULL;
s[2] = 0xa9582618e03fc9aaULL;
s[3] = 0x39abdc4529b1661cULL;
}
static inline uint64_t rotl(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
static uint64_t rand_next(void) {
const uint64_t result = rotl(s[1] * 5, 7) * 9;
const uint64_t t = s[1] << 17;
s[2] ^= s[0];
s[3] ^= s[1];
s[1] ^= s[2];
s[0] ^= s[3];
s[2] ^= t;
s[3] = rotl(s[3], 45);
return result;
}
static void rand_fill(void* dst, size_t sz) {
while (sz >= 8) {
uint64_t r = rand_next();
memcpy(dst, &r, 8);
dst = (void*)(8 + (char*)dst);
sz -= 8;
}
if (sz) {
uint64_t r = rand_next();
memcpy(dst, &r, sz);
}
}
// Logic for copying between hardware AMX state and emulated AMX state
#define PTR_ROW_FLAGS(ptr, row, flags) (((uint64_t)&*(ptr)) + (((uint64_t)((row) + (flags) * 64)) << 56))
static void capture_state(amx_state* dst) {
uint32_t row = 0;
for (; row < 8; row += 2) {
AMX_STX(PTR_ROW_FLAGS(dst->x[row].u8, row, 1));
AMX_STY(PTR_ROW_FLAGS(dst->y[row].u8, row, 1));
AMX_STZ(PTR_ROW_FLAGS(dst->z[row].u8, row, 1));
}
for (; row < 64; row += 2) {
AMX_STZ(PTR_ROW_FLAGS(dst->z[row].u8, row, 1));
}
}
static void inject_state(const amx_state* src) {
uint32_t row = 0;
for (; row < 8; row += 2) {
AMX_LDX(PTR_ROW_FLAGS(src->x[row].u8, row, 1));
AMX_LDY(PTR_ROW_FLAGS(src->y[row].u8, row, 1));
AMX_LDZ(PTR_ROW_FLAGS(src->z[row].u8, row, 1));
}
for (; row < 64; row += 2) {
AMX_LDZ(PTR_ROW_FLAGS(src->z[row].u8, row, 1));
}
}
// Test bindings
typedef struct ldst_test_buffer {
uint8_t bytes[256 + 128];
} ldst_test_buffer;
#define TEST_BINDING_LDST(op) \
static void test_##op(amx_state* state, uint64_t operand, ldst_test_buffer* buf) { \
extern void emulate_##op(amx_state* state, uint64_t operand); \
operand &= (0xffull << 56) | 0xff; \
if ((operand & (1ull << 62)) && ((#op)[7] != 'I')) operand &=~ 0x7full; \
operand += (uint64_t)buf; \
op(operand); \
operand += sizeof(ldst_test_buffer); \
emulate_##op(state, operand); \
}
#define TEST_BINDING(op) \
static void test_##op(amx_state* state, uint64_t operand, ldst_test_buffer* buf) { \
extern void emulate_##op(amx_state* state, uint64_t operand); \
(void)buf; \
op(operand); \
emulate_##op(state, operand); \
}
TEST_BINDING_LDST(AMX_LDX)
TEST_BINDING_LDST(AMX_LDY)
TEST_BINDING_LDST(AMX_STX)
TEST_BINDING_LDST(AMX_STY)
TEST_BINDING_LDST(AMX_LDZ)
TEST_BINDING_LDST(AMX_STZ)
TEST_BINDING_LDST(AMX_LDZI)
TEST_BINDING_LDST(AMX_STZI)
TEST_BINDING(AMX_EXTRX)
TEST_BINDING(AMX_EXTRY)
TEST_BINDING(AMX_MAC16)
TEST_BINDING(AMX_FMA16)
TEST_BINDING(AMX_FMA32)
TEST_BINDING(AMX_FMA64)
TEST_BINDING(AMX_FMS16)
TEST_BINDING(AMX_FMS32)
TEST_BINDING(AMX_FMS64)
TEST_BINDING(AMX_VECINT)
TEST_BINDING(AMX_VECFP)
TEST_BINDING(AMX_MATINT)
TEST_BINDING(AMX_MATFP)
TEST_BINDING(AMX_GENLUT)
#undef TEST_BINDING
static bool run_test(const char* name, void(*fn)(amx_state*, uint64_t, ldst_test_buffer*)) {
amx_state original, emulated, actual;
__attribute__((aligned(256))) ldst_test_buffer ldst[2];
rand_init();
for (int outer = 0; outer < 10000; ++outer) {
if ((outer & 255) == 0) {
printf("\rTesting %s... %d", name, outer);
fflush(stdout);
}
rand_fill(&original, sizeof(amx_state));
memcpy(&emulated, &original, sizeof(amx_state));
rand_fill(ldst, sizeof(ldst_test_buffer));
memcpy(ldst + 1, ldst, sizeof(ldst_test_buffer));
AMX_SET();
inject_state(&original);
for (int inner = 0; inner < 1000; ++inner) {
uint64_t op = rand_next();
fn(&emulated, op, ldst);
capture_state(&actual);
if (memcmp(&actual, &emulated, sizeof(amx_state)) != 0 || memcmp(ldst, ldst + 1, sizeof(ldst_test_buffer)) != 0) {
AMX_CLR();
printf("\nFailed\n");
return false;
}
memcpy(&original, &emulated, sizeof(amx_state));
}
AMX_CLR();
}
printf("\rTesting %s... OK \n", name);
return true;
}
static uint64_t fpcr_init() {
uint64_t old_fpcr;
__asm volatile ("mrs %0, fpcr" : "=r"(old_fpcr));
uint64_t new_fpcr = old_fpcr | (1ull << 25); // DN (Default NaN)
__asm volatile ("msr fpcr, %0" : : "r"(new_fpcr));
return old_fpcr;
}
static void fpcr_restore(uint64_t fpcr) {
__asm volatile ("msr fpcr, %0" : : "r"(fpcr));
}
int main() {
uint64_t old_fpcr = fpcr_init();
#define RUN_TEST(op) if (run_test(#op, test_##op)) {} else return 1
RUN_TEST(AMX_LDX);
RUN_TEST(AMX_LDY);
RUN_TEST(AMX_LDZ);
RUN_TEST(AMX_LDZI);
RUN_TEST(AMX_STX);
RUN_TEST(AMX_STY);
RUN_TEST(AMX_STZ);
RUN_TEST(AMX_STZI);
RUN_TEST(AMX_EXTRX);
RUN_TEST(AMX_EXTRY);
RUN_TEST(AMX_MAC16);
RUN_TEST(AMX_FMA16);
RUN_TEST(AMX_FMA32);
RUN_TEST(AMX_FMA64);
RUN_TEST(AMX_FMS16);
RUN_TEST(AMX_FMS32);
RUN_TEST(AMX_FMS64);
RUN_TEST(AMX_VECINT);
RUN_TEST(AMX_VECFP);
RUN_TEST(AMX_MATINT);
RUN_TEST(AMX_MATFP);
RUN_TEST(AMX_GENLUT);
#undef RUN_TEST
fpcr_restore(old_fpcr);
return 0;
}