可以使用torch.nn
包构建神经网络。
现在您已经了解了autograd
,nn
依赖于autograd
来定义模型并对其进行微分。 nn.Module
包含层,以及返回output
的方法forward(input)
。
例如,查看以下对数字图像进行分类的网络:
卷积网
这是一个简单的前馈网络。 它获取输入,将其一层又一层地馈入,然后最终给出输出。
神经网络的典型训练过程如下:
- 定义具有一些可学习参数(或权重)的神经网络
- 遍历输入数据集
- 通过网络处理输入
- 计算损失(输出正确的距离有多远)
- 将梯度传播回网络参数
- 通常使用简单的更新规则来更新网络的权重:
weight = weight - learning_rate * gradient
让我们定义这个网络:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
出:
Net(
(conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
(fc1): Linear(in_features=576, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
您只需要定义forward
函数,就可以使用autograd
为您自动定义backward
函数(计算梯度)。 您可以在forward
函数中使用任何张量操作。
模型的可学习参数由net.parameters()
返回
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight
出:
10
torch.Size([6, 1, 3, 3])
让我们尝试一个32x32
随机输入。 注意:该网络的预期输入大小(LeNet)为32x32
。 要在 MNIST 数据集上使用此网络,请将图像从数据集中调整为32x32
。
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
出:
tensor([[ 0.1002, -0.0694, -0.0436, 0.0103, 0.0488, -0.0429, -0.0941, -0.0146,
-0.0031, -0.0923]], grad_fn=<AddmmBackward>)
使用随机梯度将所有参数和反向传播的梯度缓冲区归零:
net.zero_grad()
out.backward(torch.randn(1, 10))
注意
torch.nn
仅支持小批量。 整个torch.nn
包仅支持作为微型样本而不是单个样本的输入。
例如,nn.Conv2d
将采用nSamples x nChannels x Height x Width
的 4D 张量。
如果您只有一个样本,只需使用input.unsqueeze(0)
添加一个假批量尺寸。
在继续之前,让我们回顾一下到目前为止所看到的所有类。
回顾:
torch.Tensor
-一个多维数组,支持诸如backward()
的自动微分操作。 同样,保持相对于张量的梯度。nn.Module
-神经网络模块。 封装参数的便捷方法,并带有将其移动到 GPU,导出,加载等的帮助器。nn.Parameter
-一种张量,即将其分配为Module
的属性时,自动注册为参数。autograd.Function
-实现自动微分操作的正向和反向定义。 每个Tensor
操作都会创建至少一个Function
节点,该节点连接到创建Tensor
的函数,并且编码其历史记录。
目前为止,我们涵盖了:
- 定义神经网络
- 处理输入并向后调用
仍然剩下:
- 计算损失
- 更新网络的权重
损失函数采用一对(输出,目标)输入,并计算一个值,该值估计输出与目标之间的距离。
nn
包下有几种不同的损失函数。 一个简单的损失是:nn.MSELoss
,它计算输入和目标之间的均方误差。
例如:
output = net(input)
target = torch.randn(10) # a dummy target, for example
target = target.view(1, -1) # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
出:
tensor(0.4969, grad_fn=<MseLossBackward>)
现在,如果使用.grad_fn
属性向后跟随loss
,您将看到一个计算图,如下所示:
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
因此,当我们调用loss.backward()
时,整个图将被微分。 损失,并且图中具有requires_grad=True
的所有张量将随梯度累积其.grad
张量。
为了说明,让我们向后走几步:
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
出:
<MseLossBackward object at 0x7f1ba05a1ba8>
<AddmmBackward object at 0x7f1ba05a19e8>
<AccumulateGrad object at 0x7f1ba05a19e8>
要反向传播误差,我们要做的只是对loss.backward()
。 不过,您需要清除现有的梯度,否则梯度将累积到现有的梯度中。
现在,我们将其称为loss.backward()
,然后看一下向后前后conv1
的偏差梯度。
net.zero_grad() # zeroes the gradient buffers of all parameters
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
出:
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([ 0.0111, -0.0064, 0.0053, -0.0047, 0.0026, -0.0153])
现在,我们已经看到了如何使用损失函数。
稍后阅读:
神经网络包包含各种模块和损失函数,这些模块和损失函数构成了深度神经网络的构建块。 带有文档的完整列表位于此处。
唯一需要学习的是:
- 更新网络的权重
实践中使用的最简单的更新规则是随机梯度下降(SGD):
weight = weight - learning_rate * gradient
我们可以使用简单的 Python 代码实现此目标:
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
但是,在使用神经网络时,您希望使用各种不同的更新规则,例如 SGD,Nesterov-SGD,Adam,RMSProp 等。为实现此目的,我们构建了一个小包装:torch.optim
,可实现所有这些方法。 使用它非常简单:
import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
注意
观察如何使用optimizer.zero_grad()
将梯度缓冲区手动设置为零。 这是因为如反向传播部分中所述累积了梯度。
脚本的总运行时间:(0 分钟 3.778 秒)
下载 Python 源码:neural_networks_tutorial.py
下载 Jupyter 笔记本:neural_networks_tutorial.ipynb
由 Sphinx 画廊生成的画廊