-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchmark-logsoftgpu.lua
350 lines (292 loc) · 10.8 KB
/
benchmark-logsoftgpu.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
require "nn"
cmd = torch.CmdLine()
cmd:text()
cmd:text('Benchmark Torch7')
cmd:text()
cmd:text()
cmd:text('Misc options:')
cmd:option('-nomlp', false, 'do not perform MLP tests')
cmd:option('-nocnn', false, 'do not perform CNN tests')
cmd:option('-nexmlp', 60000, '# of examples for the MLPs')
cmd:option('-nexcnn', 6000, '# of examples for the CNNs')
cmd:option('-hardtanh', false, 'use hardtanh instead of tanh')
cmd:option('-convfast', false, 'use "fast" convolution code instead of standard')
cmd:option('-openmp', false, 'use openmp *package*')
cmd:option('-double', false, 'use doubles instead of floats')
cmd:option('-cuda', false, 'use CUDA instead of floats')
cmd:option('-gi', false, 'compute gradInput')
cmd:option('-v', false, 'be verbose')
cmd:option('-batch', 1, 'batch size')
cmd:option('-iter', 1, 'number of iterations to perform')
cmd:option('-hooks', false, 'add hooks useful for debug')
cmd:text()
function hooks(params)
local n = 0
local err = 0
local function hookExample(self)
err = err + self.criterion.output
n = n + 1
end
local function hookIteration(self)
printlog(string.format('mean err = %.3f', err/n))
err = 0
n = 0
end
if params.hooks then
return hookExample, hookIteration
end
end
local params = cmd:parse(arg)
torch.manualSeed(5555)
if params.v then
printlog = print
else
printlog = print
print = function()
end
end
if params.openmp then
require 'openmp'
end
if params.convfast then
dofile('SpatialConvolutionFast.lua')
nn.SpatialConvolution = nn.SpatialConvolutionFast
end
if params.hardtanh then
nn.Tanh = nn.HardTanh
end
if params.double and params.cuda then
error('make your choice between double and cuda!!')
end
if params.double then
torch.setdefaulttensortype('torch.DoubleTensor')
elseif params.cuda then
require 'cunn'
dofile('cudahacks.lua')
torch.setdefaulttensortype('torch.CudaTensor')
print( cutorch.getDeviceProperties(cutorch.getDevice()) )
else
torch.setdefaulttensortype('torch.FloatTensor')
end
local noutput = 10
if not params.nomlp then
local ninput = 784
local dataset = {}
local data = torch.randn(params.nexmlp, ninput)
local label = torch.LongTensor(params.nexmlp)
for i=1,params.nexmlp do
label[i] = (i % noutput) + 1
end
if params.batch == 1 then
function dataset:size()
return params.nexmlp
end
setmetatable(dataset, {__index = function(self, index)
return {data[index], label[index]}
end})
else
assert(params.nexmlp % params.batch == 0, '# of examples must be divisible with batch size')
function dataset:size()
return params.nexmlp/params.batch
end
setmetatable(dataset, {__index = function(self, index)
return {data:narrow(1,(index-1)*params.batch+1, params.batch),
label:narrow(1,(index-1)*params.batch+1, params.batch)}
end})
end
if true then -- MLP 784/10
collectgarbage()
local mlp = nn.Sequential(); -- make a multi-layer perceptron
mlp:add(nn.Linear(ninput, noutput))
mlp:add(nn.LogSoftMax())
if not params.gi then
if params.v then
print('# do not compute gradInput')
end
mlp:get(1).gradInput = nil
end
local criterion = nn.ClassNLLCriterion()
local trainer = nn.StochasticGradient(mlp, criterion)
trainer.hookExample, trainer.hookIteration = hooks(params)
trainer.learningRate = 0.01
trainer.shuffleIndices = false
trainer.maxIteration = params.iter
local t = torch.Timer()
trainer:train(dataset)
printlog(string.format("mlp_%i_%i\t%.2f", ninput, noutput, params.iter*params.nexmlp/t:time().real))
end
if true then -- MLP 784/500/10
collectgarbage()
local mlp = nn.Sequential(); -- make a multi-layer perceptron
mlp:add(nn.Linear(ninput, 500))
mlp:add(nn.Tanh())
mlp:add(nn.Linear(500, noutput))
mlp:add(nn.LogSoftMax())
if not params.gi then
if params.v then
print('# do not compute gradInput')
end
mlp:get(1).gradInput = nil
end
local criterion = nn.ClassNLLCriterion()
local trainer = nn.StochasticGradient(mlp, criterion)
trainer.hookExample, trainer.hookIteration = hooks(params)
trainer.learningRate = 0.01
trainer.shuffleIndices = false
trainer.maxIteration = params.iter
local t = torch.Timer()
trainer:train(dataset)
printlog(string.format("mlp_%i_500_%i\t%.2f", ninput, noutput, params.iter*params.nexmlp/t:time().real))
end
if true then --MLP 784/1000/1000/1000/10
collectgarbage()
local mlp = nn.Sequential(); -- make a multi-layer perceptron
mlp:add(nn.Linear(ninput, 1000))
mlp:add(nn.Tanh())
mlp:add(nn.Linear(1000, 1000))
mlp:add(nn.Tanh())
mlp:add(nn.Linear(1000, 1000))
mlp:add(nn.Tanh())
mlp:add(nn.Linear(1000, noutput))
mlp:add(nn.LogSoftMax())
if not params.gi then
if params.v then
print('# do not compute gradInput')
end
mlp:get(1).gradInput = nil
end
local criterion = nn.ClassNLLCriterion()
local trainer = nn.StochasticGradient(mlp, criterion)
trainer.hookExample, trainer.hookIteration = hooks(params)
trainer.learningRate = 0.01
trainer.shuffleIndices = false
trainer.maxIteration = params.iter
local t = torch.Timer()
trainer:train(dataset)
printlog(string.format("mlp_%i_1000_1000_1000_%i\t%.2f", ninput, noutput, params.iter*params.nexmlp/t:time().real))
end
end
if not params.nocnn then
function createcnndataset(nex,w,h)
local dataset = {}
local data = torch.randn(nex, 1, w, h)
local label = torch.LongTensor(params.nexmlp)
for i=1,params.nexmlp do
label[i] = (i % noutput) + 1
end
if params.batch == 1 then
function dataset:size()
return nex
end
setmetatable(dataset, {__index = function(self, index)
return {data[index], label[index]}
end})
else
assert(nex % params.batch == 0, '# of examples must be divisible with batch size')
function dataset:size()
return nex/params.batch
end
setmetatable(dataset, {__index = function(self, index)
return {data:narrow(1,(index-1)*params.batch+1, params.batch),
label:narrow(1,(index-1)*params.batch+1, params.batch)}
end})
end
return dataset
end
if true then --LeNet5-like 32x32
collectgarbage()
local dataset = createcnndataset(params.nexcnn, 32, 32)
local mlp = nn.Sequential(); -- make a multi-layer perceptron
mlp:add(nn.SpatialConvolution(1, 6, 5, 5)) -- output 28x28
mlp:add(nn.Tanh())
mlp:add(nn.SpatialMaxPooling(2, 2, 2, 2)) --output 14x14
mlp:add(nn.Tanh())
mlp:add(nn.SpatialConvolution(6, 16, 5, 5)) -- output 10x10
mlp:add(nn.Tanh())
mlp:add(nn.SpatialMaxPooling(2, 2, 2, 2)) -- output 5x5
mlp:add(nn.Tanh())
mlp:add(nn.Reshape(16*5*5))
mlp:add(nn.Linear(16*5*5, 120))
mlp:add(nn.Linear(120, noutput))
mlp:add(nn.LogSoftMax())
if not params.gi then
if params.v then
print('# do not compute gradInput')
end
mlp:get(1).gradInput = nil
end
local criterion = nn.ClassNLLCriterion()
local trainer = nn.StochasticGradient(mlp, criterion)
trainer.hookExample, trainer.hookIteration = hooks(params)
trainer.learningRate = 0.01
trainer.shuffleIndices = false
trainer.maxIteration = params.iter
local t = torch.Timer()
trainer:train(dataset)
printlog(string.format("cnn_32x32\t%.2f", params.iter*params.nexcnn/t:time().real))
end
if true then --LeNet5-like 96x96
collectgarbage()
local dataset = createcnndataset(params.nexcnn, 96, 96)
local mlp = nn.Sequential(); -- make a multi-layer perceptron
mlp:add(nn.SpatialConvolution(1, 6, 7, 7)) -- output 90x90
mlp:add(nn.Tanh())
mlp:add(nn.SpatialMaxPooling(3, 3, 3, 3)) --output 30x30
mlp:add(nn.Tanh())
mlp:add(nn.SpatialConvolution(6, 16, 7, 7)) -- output 24x24
mlp:add(nn.Tanh())
mlp:add(nn.SpatialMaxPooling(3, 3, 3, 3)) -- output 8x8
mlp:add(nn.Tanh())
mlp:add(nn.Reshape(16*8*8))
mlp:add(nn.Linear(16*8*8, 120))
mlp:add(nn.Linear(120, noutput))
mlp:add(nn.LogSoftMax())
if not params.gi then
if params.v then
print('# do not compute gradInput')
end
mlp:get(1).gradInput = nil
end
local criterion = nn.ClassNLLCriterion()
local trainer = nn.StochasticGradient(mlp, criterion)
trainer.hookExample, trainer.hookIteration = hooks(params)
trainer.learningRate = 0.01
trainer.shuffleIndices = false
trainer.maxIteration = params.iter
local t = torch.Timer()
trainer:train(dataset)
printlog(string.format("cnn_96x96\t%.2f", params.iter*params.nexcnn/t:time().real))
end
if true then --LeNet5-like 256x256
collectgarbage()
local dataset = createcnndataset(params.nexcnn, 256, 256)
local mlp = nn.Sequential(); -- make a multi-layer perceptron
mlp:add(nn.SpatialConvolution(1, 6, 7, 7)) -- output 250x250
mlp:add(nn.Tanh())
mlp:add(nn.SpatialMaxPooling(5, 5, 5, 5)) --output 50x50
mlp:add(nn.Tanh())
mlp:add(nn.SpatialConvolution(6, 16, 7, 7)) -- output 44x44
mlp:add(nn.Tanh())
mlp:add(nn.SpatialMaxPooling(4, 4, 4, 4)) -- output 11x11
mlp:add(nn.Tanh())
mlp:add(nn.Reshape(16*11*11))
mlp:add(nn.Linear(16*11*11, 120))
mlp:add(nn.Linear(120, noutput))
mlp:add(nn.LogSoftMax())
if not params.gi then
if params.v then
print('# do not compute gradInput')
end
mlp:get(1).gradInput = nil
end
local criterion = nn.ClassNLLCriterion()
local trainer = nn.StochasticGradient(mlp, criterion)
trainer.hookExample, trainer.hookIteration = hooks(params)
trainer.learningRate = 0.01
trainer.shuffleIndices = false
trainer.maxIteration = params.iter
local t = torch.Timer()
trainer:train(dataset)
printlog(string.format("cnn_256x256\t%.2f", params.iter*params.nexcnn/t:time().real))
end
end