-
Notifications
You must be signed in to change notification settings - Fork 336
/
genretlat.py
executable file
·262 lines (239 loc) · 8.9 KB
/
genretlat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env python3
# -*- coding: utf-8
# generate return latencies to tune toplev model
# Copyright (c) 2023, Intel Corporation
# Author: Andi Kleen
#
# This program is free software; you can redistribute it and/or modify it
# under the terms and conditions of the GNU General Public License,
# version 2, as published by the Free Software Foundation.
#
# This program is distributed in the hope it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
from __future__ import print_function
import subprocess as subp
import os
import sys
import ocperf
import json
import argparse
import random
from dummyarith import DummyArith
from collections import Counter, defaultdict
from copy import copy
import csv
def cmd(args, l):
if args.verbose:
print(" ".join(l))
return l
class SamplePerfRun(object):
"""Run perf record to collect Timed PEBS information and generate averages for event weights."""
def __init__(self, args):
self.pi = self.pr = self.ps = None
self.args = args
def execute(self, perf, evsamples, origevents, pargs):
self.perf = perf
self.rmap = { x: y for x, y in zip(evsamples, origevents) }
pr = subp.Popen(cmd(self.args, [perf, "record",
"-W",
"-B",
"-c", "%d" % self.args.interval,
"-e", ",".join(evsamples),
"-o", "-"] + pargs),
stdout=subp.PIPE)
pi = subp.Popen(cmd(self.args, [perf, "inject"]),
stdin=pr.stdout,
stdout=subp.PIPE)
ps = subp.Popen(cmd(self.args, [perf, "script",
"-i", "-",
"--ns",
"-F", "time,retire_lat,event"]),
stdin=pi.stdout,
stdout=subp.PIPE)
pi.stdout.close()
pr.stdout.close()
self.pr, self.pi, self.ps = pr, pi, ps
def handle_samples(self):
for l in self.ps.stdout:
l = l.decode()
n = l.split()
ts, event, weight = float(n[0].replace(":","")), n[1].replace(":",""), int(n[2])
if self.args.csvplot:
self.args.csvplot.writerow([ts, self.rmap[event] if event in self.rmap else event, weight])
if self.args.fake:
yield event, random.randint(0, 100)
else:
yield event, weight
self.pr.wait()
self.pi.wait()
self.ps.wait()
NUM_SPARKS = 8
SPARK_SHIFT = 8
def spark_f(l):
min_ = min(l)
f = int(max(((max(l) - min_) << SPARK_SHIFT) / (NUM_SPARKS - 1), 1))
return f, min_
# this samples unlike normal spark lines
def gen_spark_buckets(l):
if len(l) == 0:
return [], 0, 1
f, min_ = spark_f(l)
return [((x - min_) << SPARK_SHIFT) / f for x in random.sample(l, min(NUM_SPARKS, len(l)))], min_, f
def lookup(s, i, fb):
if 0 <= i <= len(s) - 1:
return s[i]
return fb
def gen_spark(buckets, min_, f):
return "".join([lookup("▁▂▃▄▅▆▇█", int((int((x - min_)) << SPARK_SHIFT) / f), " ") for x in buckets])
def gen_stat(samples):
# {
# "COUNT": 5358917,
# "MIN": 0,
# "MAX": 65535,
# "MEAN": 3.23,
# "MEDIAN": 0,
# "NZ_MEDIAN": 1,
# "MODE": 0,
# "MODE_COUNT": 3631698,
# "NZ_MODE": 1,
# "NZ_MODE_COUNT": 1213029,
# "BUCKETS": 2344
# },
nz = [x for x in samples if x != 0.0]
buckets = Counter(samples)
nz_buckets = copy(buckets)
if 0 in nz_buckets:
del nz_buckets[0]
spark, min_, f = gen_spark_buckets(samples)
spark_nz, min_nz, f_nz = gen_spark_buckets(nz)
return {
"COUNT": len(samples),
"MIN": min(samples),
"MAX": max(samples),
"MEAN": round(float(sum(samples)) / len(samples), 2),
"MEDIAN": sorted(samples)[len(samples)//2] if len(samples) > 0 else 0.0,
"NZ_MEDIAN": sorted(nz)[len(nz)//2] if len(nz) > 0 else 0.0,
"MODE": buckets.most_common(1)[0][0] if len(buckets) > 0 else 0.0,
"MODE_COUNT": buckets.most_common(1)[0][1] if len(buckets) > 0 else 0,
"NZ_MODE": nz_buckets.most_common(1)[0][0] if len(nz_buckets) > 0 else 0,
"NZ_MODE_COUNT": nz_buckets.most_common(1)[0][1] if len(nz_buckets) > 0 else 0,
"BUCKETS": len(buckets),
"F": f,
"F_NZ": f_nz,
"MIN_NZ": min_nz,
"SPARK_BUCKETS": ",".join(["%d" % x for x in spark]),
"SPARK_BUCKETS_NZ": ",".join(["%d" % x for x in spark_nz]),
}
def human_output(data):
d = data["Data"]
for ev in sorted(d.keys()):
print("%s: " % ev, end="")
for m in sorted(d[ev].keys()):
if m.startswith("SPARK"):
if d[ev][m] == "":
continue
l = [(int(x) if x.isdecimal() else 0) for x in d[ev][m].split(",")]
s = gen_spark(l, d[ev]["MIN"], d[ev]["F_NZ" if m.endswith("_NZ") else "F"])
print("%s %s " % (m.lower(), s), end="")
else:
print("%s %s " % (m.lower(), d[ev][m]), end="")
print()
def get_model_number():
with open("/proc/cpuinfo") as f:
for l in f:
n = l.split()
if len(n) >= 3 and n[0] == "model" and n[1] == ":":
return int(n[2])
return 0
def find_model(args):
if not args.cpu:
cpu = open("/sys/devices/cpu/caps/pmu_name").read().strip()
if cpu == "meteorlake_hybrid":
args.cpu = "mtl"
elif cpu == "sapphire_rapids":
model = get_model_number()
if model == 0xad or model == 0xae:
args.cpu = "gnr"
else:
sys.exit("Unsupported CPU %d" % model)
elif cpu == "granite_rapids":
args.cpu = "gnr"
else:
sys.exit("Unsupported CPU %s" % cpu)
if args.cpu == "mtl":
import mtl_rwc_ratios
return mtl_rwc_ratios
elif args.cpu == "gnr":
import gnr_server_ratios
return gnr_server_ratios
sys.exit("Unknown cpu %s" % args.cpu)
def gen_events(args):
model = find_model(args)
nodes = []
class Runner(object):
def metric(self, n):
nodes.append(n)
n.thresh = True
def run(self, n):
nodes.append(n)
n.thresh = True
model.Setup(Runner())
events = set()
def collect(name, level):
if level == 999:
events.add(name + ":pp")
return DummyArith()
for n in nodes:
n.compute(collect)
return sorted(events)
def getevent(emap, e):
ev = emap.getevent(e)
if ev is None:
print(e, "not found")
return "dummy"
return ev.output()
def init_args():
ap = argparse.ArgumentParser('Generate JSON of retirement latencies to tune toplev')
ap.add_argument('--output', '-o', type=argparse.FileType('w'), default=sys.stdout,
help="")
ap.add_argument('--verbose', '-v', action='store_true', help='be verbose')
ap.add_argument('--fake', action='store_true', help=argparse.SUPPRESS)
ap.add_argument('--interval', '-i', type=int, default=103, help="Interval for sampling")
ap.add_argument('--pmu', '-p', nargs='*', default=["cpu", "cpu_core"], help="for which PMUs to collect")
ap.add_argument('--quiet', '-q', action='store_true')
ap.add_argument('--csv', '-c', type=argparse.FileType('w'), help="Generate CSV file with pushout latencies", default=None)
ap.add_argument('--cpu', help="Set CPU type (gnr, mtl)")
args, rest = ap.parse_known_args()
if args.csv:
args.csvplot = csv.writer(args.csv)
else:
args.csvplot = None
return args, rest
def main():
args, rest = init_args()
events = gen_events(args)
pmus = ocperf.find_pmus()
emap = ocperf.find_emap(pmu=[x for x in pmus if x != "cpu_atom"][0])
if emap is None:
sys.exit("Cannot find json event list")
pevents = [getevent(emap, e) for e in events]
if args.verbose:
print(events)
s = SamplePerfRun(args)
perf = os.getenv("PERF")
if perf is None:
perf = "perf"
s.execute(perf, pevents, events, rest)
samples = defaultdict(list)
for ev, weight in s.handle_samples():
samples[ev].append(weight)
data = { "Data": { ev.upper().replace("CPU_CORE","").replace("/","").replace(":","").replace("RETIRED_", "RETIRED."): gen_stat(s)
for ev, s in samples.items()
if "/" not in ev or any([x in ev for x in args.pmu]) } }
json.dump(data, args.output, indent=2, sort_keys=True)
if not args.quiet:
human_output(data)
if __name__ == '__main__':
main()