-
Notifications
You must be signed in to change notification settings - Fork 98
/
chatbot_py.py
67 lines (55 loc) · 1.75 KB
/
chatbot_py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# -*- coding: utf-8 -*-
"""chatbot.py
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1feCkdIYr8e1V5KIzxxooJr5o2bRK4R4p
"""
import nltk
import random
import numpy as np
import json
import pickle
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.models import load_model
lemmatizer=WordNetLemmatizer()
with open('intents.json') as json_file:
intents = json.load(json_file)
words=pickle.load(open('words.pkl','rb'))
classes=pickle.load(open('classes.pkl','rb'))
model=load_model('chatbotmodel.h5')
def clean_up_sentence(sentence):
sentence_words=nltk.word_tokenize(sentence)
sentence_words=[lemmatizer.lemmatize(word) for word in sentence_words]
return sentence_words
def bag_of_words(sentence):
sentence_words=clean_up_sentence(sentence)
bag=[0]*len(words)
for w in sentence_words:
for i,word in enumerate(words):
if word == w:
bag[i]=1
return np.array(bag)
def predict_class(sentence):
bow=bag_of_words(sentence)
res=model.predict(np.array([bow]))[0]
ERROR_THRESHOLD=0.25
results=[[i,r] for i,r in enumerate(res) if r> ERROR_THRESHOLD]
results.sort(key=lambda x:x[1],reverse=True)
return_list=[]
for r in results:
return_list.append({'intent': classes[r[0]],'probability':str(r[1])})
return return_list
def get_response(intents_list,intents_json):
tag=intents_list[0]['intent']
list_of_intents=intents_json['intents']
for i in list_of_intents:
if i['tag']==tag:
result=random.choice(i['responses'])
break
return result
print("GO! BOT IS RUNNING")
while True:
message=input("")
ints=predict_class(message)
res=get_response(ints,intents)
print(res)