-
Notifications
You must be signed in to change notification settings - Fork 96
/
faceit_live.py
285 lines (230 loc) · 8.94 KB
/
faceit_live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import imageio
import numpy as np
import pandas as pd
from skimage.transform import resize
import warnings
import sys
import cv2
import time
import PIL.Image as Image
import PIL.ImageFilter
import io
from io import BytesIO
import pyautogui
import os
import glob
from argparse import Namespace
import argparse
import timeit
import torch
warnings.filterwarnings("ignore")
############## setup ####
stream = True
media_path = './media/'
model_path = 'model/'
parser = argparse.ArgumentParser()
parser.add_argument('--webcam_id', type = int, default = 0)
parser.add_argument('--stream_id', type = int, default = 1)
parser.add_argument('--gpu_id', type = int, default = 0)
parser.add_argument('--system', type = str, default = "win")
args = parser.parse_args()
webcam_id = args.webcam_id
gpu_id = args.gpu_id
stream_id = args.stream_id
system = args.system
webcam_height = 480
webcam_width = 640
screen_width, screen_height = pyautogui.size()
img_shape = [256, 256, 0]
if system=="linux":
print("Linux version, importing FakeWebCam")
import pyfakewebcam
first_order_path = 'first-order-model/'
sys.path.insert(0,first_order_path)
reset = True
# import methods from first-order-model
import demo
from demo import load_checkpoints, make_animation, tqdm
# prevent tqdm from outputting to console
demo.tqdm = lambda *i, **kwargs: i[0]
print("CUDA is available: ",torch.cuda.is_available())
if (torch.cuda.is_available()):
torch.cuda.device("cuda:" + str(gpu_id))
print("Device Name:",torch.cuda.get_device_name(gpu_id))
print("Device Count:",torch.cuda.device_count())
print("CUDA: ",torch.version.cuda)
print("cuDNN",torch.backends.cudnn.version())
print("Device",torch.cuda.current_device())
img_list = []
print("Scanning /media folder for images to use...")
for filename in os.listdir(media_path):
if filename.endswith(".jpg") or filename.endswith(".jpeg") or filename.endswith(".png"):
img_list.append(os.path.join(media_path, filename))
print(os.path.join(media_path, filename))
#print(img_list, len(img_list))
############## end setup ####
def main():
global source_image
source_image = readnextimage(0)
# start streaming
if system=="linux":
camera = pyfakewebcam.FakeWebcam(f'/dev/video{stream_id}', webcam_width, webcam_height)
camera.print_capabilities()
print(f"Fake webcam created on /dev/video{stream_id}. Use Firefox and join a Google Meeting to test.")
# capture webcam
video_capture = cv2.VideoCapture(webcam_id)
time.sleep(1)
width = video_capture.get(3) # float
height = video_capture.get(4) # float
print("webcam dimensions = {} x {}".format(width,height))
# load models
net = load_face_model()
generator, kp_detector = demo.load_checkpoints(config_path=f'{first_order_path}config/vox-adv-256.yaml', checkpoint_path=f'{model_path}/vox-adv-cpk.pth.tar')
# create windows
cv2.namedWindow('Face', cv2.WINDOW_GUI_NORMAL) # extracted face
cv2.moveWindow('Face', int(screen_width//2)-150, 100)
cv2.resizeWindow('Face', 256,256)
cv2.namedWindow('DeepFake', cv2.WINDOW_GUI_NORMAL) # face transformation
cv2.moveWindow('DeepFake', int(screen_width//2)+150, 100)
cv2.resizeWindow('DeepFake', 256, 256)
cv2.namedWindow('Stream', cv2.WINDOW_GUI_NORMAL) # rendered to fake webcam
cv2.moveWindow('Stream', int(screen_width//2)-int(webcam_width//2), 400)
cv2.resizeWindow('Stream', webcam_width,webcam_height)
print("Press C to center Webcam, Press B/N for previous/next image in media directory, T to alter between relative and absolute transformation, Q to quit")
x1,y1,x2,y2 = [0,0,0,0]
relative = True
previous = None
while True:
ret, frame = video_capture.read()
frame = cv2.resize(frame, (640, 480))
frame = cv2.flip(frame,1)
if (previous is None or reset is True):
x1,y1,x2,y2 = find_face_cut(net,frame)
previous = cut_face_window(x1,y1,x2,y2,frame)
reset = False
#img_shape = source_image.shape
#cv2.resizeWindow('DeepFake', int(img_shape[1] // img_shape[0] * 256), 256)
#cv2.imshow('Previous',previous)
curr_face = cut_face_window(x1,y1,x2,y2,frame.copy())
# cv2.imshow('Previous',previous)
# cv2.imshow('Curr Face',curr_face)
# cv2.imshow('Source Image',source_image)
deep_fake = process_image(source_image,previous,curr_face,net, generator, kp_detector, relative)
#print("deep_fake",deep_fake.shape)
deep_fake = cv2.cvtColor(deep_fake, cv2.COLOR_RGB2BGR)
rgb = cv2.resize(deep_fake,(int(source_image.shape[0] // source_image.shape[1] * 480),480))
# pad image
x_border = int((640-(img_shape[1] // img_shape[0] * 480))//2)
#y_border = int((480-(img_shape[0] // img_shape[1] * 640))//2)
stream_v = cv2.copyMakeBorder(rgb, 0, 0, x_border if x_border >=0 else 0, x_border if x_border >=0 else 0, cv2.BORDER_CONSTANT)
#cv2.imshow('Webcam', frame)
cv2.imshow('Face', curr_face)
cv2.imshow('DeepFake', deep_fake)
#cv2.imshow('Previous', previous)
#cv2.imshow('RGB', rgb)
#cv2.imshow('Source Image', source_image)
#time.sleep(1/30.0)
cv2.imshow('Stream',stream_v)
# stream to fakewebcam
if system=="linux":
stream_v = cv2.flip(stream_v,1)
stream_v = cv2.cvtColor(stream_v, cv2.COLOR_BGR2RGB)
stream_v = (stream_v*255).astype(np.uint8)
#print("output to fakecam")
camera.schedule_frame(stream_v)
k = cv2.waitKey(1)
# Hit 'q' on the keyboard to quit!
if k & 0xFF == ord('q'):
print("Quiting")
video_capture.release()
break
elif k==ord('c'):
# center
print("Centering the image")
reset = True
elif k==ord('b'):
# previous image
print("Loading previous image")
source_image = readpreviousimage()
reset = True
elif k==ord('n'):
# next image
print("Loading next image")
source_image = readnextimage()
reset = True
elif k==ord('t'):
# rotate
relative = not relative
print("Changing transform mode")
cv2.destroyAllWindows()
exit()
# transform face with first-order-model
def process_image(source_image,base,current,net, generator,kp_detector,relative):
predictions = make_animation(source_image, [base,current], generator, kp_detector, relative=relative, adapt_movement_scale=False)
return predictions[1]
def load_face_model():
modelFile = f"{model_path}/res10_300x300_ssd_iter_140000.caffemodel"
configFile = f"{model_path}./deploy.prototxt.txt"
net = cv2.dnn.readNetFromCaffe(configFile, modelFile)
return net
def cut_face_window(x1,y1,x2,y2,frame):
frame = frame.copy()
frame = frame[y1:y2,x1:x2]
face = resize(frame, (256, 256))[..., :3]
return face
# find the face in webcam stream and center a 256x256 window
def find_face_cut(net,face):
blob = cv2.dnn.blobFromImage(face, 1.0, (300, 300), [104, 117, 123], False, False)
frameWidth = 640
frameHeight = 480
net.setInput(blob)
detections = net.forward()
bboxes = []
face_found = False
for i in range(detections.shape[2]):
#print(i)
confidence = detections[0, 0, i, 2]
if confidence > 0.9:
x1 = (int(detections[0, 0, i, 3] * frameWidth)//2)*2
y1 = (int(detections[0, 0, i, 4] * frameHeight)//2)*2
x2 = (int(detections[0, 0, i, 5] * frameWidth)//2)*2
y2 = (int(detections[0, 0, i, 6] * frameHeight)//2)*2
face_margin_w = int(256 - (abs(x1-x2)))
face_margin_h = int(256 - (abs(y1-y2)))
cut_x1 = x1 - int(face_margin_w//2)
cut_y1 = y1 - int(2*face_margin_h//3)
cut_x2 = x2 + int(face_margin_w//2)
cut_y2 = y2 + face_margin_h - int(2*face_margin_h//3)
face_found = True
break
if not face_found:
print("No face detected in video")
# let's just use the middle section of the image
cut_x1,cut_y1,cut_x2,cut_y2 = 112,192,368,448
else:
print(f'Found face at: ({x1,y1}) ({x2},{y2} width:{(x2-x1)} height: {(y2-y1)})')
print(f'Cutting at: ({cut_x1,cut_y1}) ({cut_x2},{cut_y2} width:{(cut_x2-cut_x1)} height: {(cut_y2-cut_y1)})')
return cut_x1,cut_y1,cut_x2,cut_y2
def readimage():
global img_list,img_shape
img = imageio.imread(img_list[pos])
img = resize(img, (256, 256))[..., :3]
return img
def readpreviousimage():
global pos
if pos<len(img_list)-1:
pos=pos-1
else:
pos=0
return readimage()
def readnextimage(position=-1):
global pos
if (position != -1):
pos = position
else:
if pos<len(img_list)-1:
pos=pos+1
else:
pos=0
return readimage()
main()