-
Notifications
You must be signed in to change notification settings - Fork 0
/
report.bbl
479 lines (405 loc) · 19.9 KB
/
report.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
\begin{thebibliography}{1}
\bibitem{machine_data}
Curt Monash
\newblock "Three broad categories of data."
\newblock \url{http://www.dbms2.com/2010/01/17/three-broad-categories-of-data/}
\bibitem{splunk}
Splunk, Inc.
\newblock "Big Data Analytics."
\newblock \url{http://www.splunk.com/view/big-data/SP-CAAAGFH}
\bibitem{chandola}
Chandola, Varun, Arindam Banerjee, and Vipin Kumar.
\newblock "Anomaly detection: A survey."
\newblock \emph{ACM Computing Surveys (CSUR)} 41.3 (2009): 15.
\bibitem{chandola2}
Chandola, Varun, Arindam Banerjee, and Vipin Kumar.
\newblock "Anomaly detection for discrete sequences: A survey."
\newblock \emph{Knowledge and Data Engineering, IEEE Transactions on} 24.5 (2012): 823-839.
\bibitem{chandola3}
Chandola, Varun.
\newblock "Anomaly detection for symbolic sequences and time series data."
\newblock \emph{Dissertation.} University of Minnesota, 2009.
\bibitem{hodge}
Hodge, Victoria, and Jim Austin.
\newblock A survey of outlier detection methodologies.
\newblock \emph{Artificial Intelligence Review} 22.2 (2004): 85-126.
\bibitem{agyemang}
Agyemang, Malik, Ken Barker, and Rada Alhajj.
\newblock "A comprehensive survey of numeric and symbolic outlier mining techniques."
\newblock \emph{Intelligent Data Analysis} 10.6 (2006): 521-538.
\bibitem{barnett}
Barnett, Vic, and Toby Lewis.
\newblock "Outliers in statistical data."
\newblock \emph{Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics, Chichester: Wiley, 1984, 3nd} (1984).
\bibitem{hawkins}
Hawkins, D. M.
\newblock "Identification of outliers."
\newblock \emph{Monographs on Applied Probability and Statistics}, (1980).
\bibitem{leroy}
Leroy, Annick M., and Peter J. Rousseeuw.
\newblock "Robust regression and outlier detection."
\newblock \emph{Wiley Series in Probability and Mathematical Statistics, New York: Wiley}, (1987).
\bibitem{bakar}
Bakar, Zuriana Abu, et al.
\newblock "A comparative study for outlier detection techniques in data mining."
\newblock \emph{Cybernetics and Intelligent Systems, 2006 IEEE Conference on.} IEEE, 2006.
\bibitem{phua}
Phua, Clifton, Damminda Alahakoon, and Vincent Lee.
\newblock "Minority report in fraud detection: classification of skewed data."
\newblock \emph{ACM SIGKDD Explorations Newsletter} 6.1 (2004): 50-59.
\bibitem{joshi}
Joshi, Mahesh V., Ramesh C. Agarwal, and Vipin Kumar.
\newblock "Predicting rare classes: Can boosting make any weak learner strong?."
\newblock \emph{Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining.} ACM, 2002.
\bibitem{dasgupta}
Dasgupta, Dipankar, and Fernando Nino.
\newblock "A comparison of negative and positive selection algorithms in novel pattern detection."
\newblock \emph{Systems, Man, and Cybernetics, 2000 IEEE International Conference on.} Vol. 1. IEEE, 2000.
%%\bibitem{singh1}
%%Markou, Markos, and Sameer Singh.
%%\newblock "Novelty detection: a review—part 1: statistical approaches."
%%\newblock \emph{Signal Processing} 83.12 (2003): 2481-2497.
%%
%%\bibitem{singh2}
%%Markou, Markos, and Sameer Singh.
%%\newblock "Novelty detection: a review—part 2:: neural network based approaches."
%%\newblock \emph{Signal Processing} 83.12 (2003): 2499-2521.
%\bibitem{ids1}
%Lazarevic, Aleksandar, et al.
%\newblock "A comparative study of anomaly detection schemes in network intrusion detection."
%\newblock \emph{Proceedings of the third SIAM international conference on data mining.} Vol. 3. Society for Industrial \& Applied, 2003.
%
%\bibitem{ids2}
%Patcha, Animesh, and Jung-Min Park.
%\newblock "An overview of anomaly detection techniques: Existing solutions and latest technological trends."
%\newblock \emph{Computer Networks 51.12 (2007):} 3448-3470.
%
%\bibitem{ids3}
%Lee, Wenke, Salvatore J. Stolfo, and Kui W. Mok
%\newblock "A data mining framework for building intrusion detection models."
%\newblock \emph{Security and Privacy, 1999. Proceedings of the 1999 IEEE Symposium on.} IEEE, 1999.
%
%\bibitem{fraud1}
%Fawcett, Tom, and Foster Provost.
%\newblock "Adaptive fraud detection."
%\newblock \emph{Data mining and knowledge discovery} 1.3 (1997): 291-316.
%
%\bibitem{fraud2}
%Bolton, Richard J., and David J. Hand.
%\newblock "Statistical fraud detection: A review."
%\newblock \emph{Statistical Science} (2002): 235-249.
%
%\bibitem{sensor1}
%Du, Wenliang, Lei Fang, and Ning Peng.
%\newblock "Lad: Localization anomaly detection for wireless sensor networks."
%\newblock \emph{Journal of Parallel and Distributed Computing} 66.7 (2006): 874-886.
%
%\bibitem{sensor2}
%Bhuse, Vijay, and Ajay Gupta.
%\newblock "Anomaly intrusion detection in wireless sensor networks."
%\newblock \emph{Journal of High Speed Networks} 15.1 (2006): 33-51.
\bibitem{song}
Song, Xiuyao, et al.
\newblock "Conditional anomaly detection."
\newblock \emph{Knowledge and Data Engineering, IEEE Transactions on} 19.5 (2007): 631-645.
\bibitem{eskin}
Eskin, Eleazar, et al.
\newblock "A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data." (2002).
%\bibitem{abraham}
%Abraham, Bovas, and Alice Chuang.
%\newblock "Outlier detection and time series modeling."
%\newblock \emph{Technometrics} 31.2 (1989): 241-248.
%
%\bibitem{bianco}
%Bianco, Ana Maria, et al.
%\newblock "Outlier detection in regression models with arima errors using robust estimates."
%\newblock \emph{Journal of Forecasting} 20.8 (2001): 565-579.
\bibitem{meckesheimer}
Basu, Sabyasachi, and Martin Meckesheimer.
\newblock "Automatic outlier detection for time series: an application to sensor data."
\newblock \emph{Knowledge and Information Systems} 11.2 (2007): 137-154.
%\bibitem{perkins1}
%Ma, Junshui, and Simon Perkins.
%\newblock "Time-series novelty detection using one-class support vector machines."
%\newblock \emph{Neural Networks, 2003. Proceedings of the International Joint Conference on.} Vol. 3. IEEE, 2003.
\bibitem{perkins2}
Ma, Junshui, and Simon Perkins.
\newblock "Online novelty detection on temporal sequences."
\newblock \emph{Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining.} ACM, 2003.
%\bibitem{fox}
%Fox, Anthony J.
%\newblock "Outliers in time series."
%\newblock \emph{Journal of the Royal Statistical Society. Series B (Methodological)} (1972): 350-363.
%\bibitem{chuang}
%Abraham, Bovas, and Alice Chuang.
%\newblock "Outlier detection and time series modeling."
%\newblock \emph{Technometrics} 31.2 (1989): 241-248.
%\bibitem{box}
%Abraham, Bovas, and George EP Box.
%\newblock "Bayesian analysis of some outlier problems in time series."
%\newblock \emph{Biometrika} 66.2 (1979): 229-236.
%\bibitem{galeano}
%Galeano, Pedro, Daniel Peña, and Ruey S. Tsay.
%\newblock "Outlier detection in multivariate time series by projection pursuit."
%\newblock \emph{Journal of the American Statistical Association} 101.474 (2006): 654-669.
%\bibitem{zeevi}
%Meir, Assaf J. Zeevi Ron, and Robert J. Adler.
%\newblock "Time series prediction using mixtures of experts."
%\newblock \emph{Advances in Neural Information Processing Systems 9: Proceedings of The 1996 Conference.} Vol. 9. MIT Press, 1997.
\bibitem{faloutsos1}
\em{Christos Faloutsos, M. Ranganathan and Yannis Manolopoulos},
\newblock "Fast Subsequence Matching in Time-Series Databases."
\newblock \emph{Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data.} ACM, 1994
\bibitem{faloutsos2}
Yi, Byoung-Kee, and Christos Faloutsos.
\newblock "Fast time sequence indexing for arbitrary Lp norms."
\newblock \emph{Proceedings of the 26th international conference on very large databases}, 2000.
\bibitem{pong}
\em{Chan, Kin-Pong, and Ada Wai-Chee Fu.}
\newblock "Efficient time series matching by wavelets."
\newblock \emph{Data Engineering, 1999. Proceedings., 15th International Conference on.} IEEE, 1999.
%\bibitem{tsay}
%\em{Tsay, Ruey S., Daniel Peña, and Alan E. Pankratz.}
%\newblock "Outliers in multivariate time series."
%\newblock \emph{Biometrika} 87.4 (2000): 789-804.
%\bibitem{yi}
%Yi, B-K., et al.
%\newblock "Online data mining for co-evolving time sequences."
%\newblock \emph{Data Engineering, 2000. Proceedings. 16th International Conference on}. IEEE, 2000.
\bibitem{ye}
Ye, Nong.
\newblock "A markov chain model of temporal behavior for anomaly detection."
\newblock \emph{Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop.} Vol. 166. Oakland: IEEE, 2000.
%\bibitem{hirsh}
%Weiss, Gary M., and Haym Hirsh.
%\newblock "Learning to predict rare events in event sequences."
%\newblock \emph{Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining.} 1998.
%\bibitem{vilalta}
%Vilalta, Ricardo, and Sheng Ma.
%\newblock "Predicting rare events in temporal domains."
%\newblock \emph{Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on.} IEEE, 2002.
%\bibitem{ilgun}
%Ilgun, Koral, Richard A. Kemmerer, and Phillip A. Porras.
%\newblock "State transition analysis: A rule-based intrusion detection approach."
%\newblock \emph{Software Engineering, IEEE Transactions on} 21.3 (1995): 181-199.
\bibitem{blender}
Blender, R., K. Fraedrich, and F. Lunkeit.
\newblock "Identification of cyclone-track regimes in the North Atlantic."
\newblock \emph{Quarterly Journal of the Royal Meteorological Society} 123.539 (1997): 727-741.
\bibitem{sekar1}
Sekar, R., et al.
\newblock "A fast automaton-based method for detecting anomalous program behaviors."
\newblock \emph{Security and Privacy, 2001. S\&P 2001. Proceedings. 2001 IEEE Symposium on.} IEEE, 2001.
\bibitem{sekar2}
Sekar, R., et al.
\newblock "Specification-based anomaly detection: a new approach for detecting network intrusions."
\newblock \emph{Proceedings of the 9th ACM conference on Computer and communications security.} ACM, 2002.
\bibitem{keogh1}
Keogh, Eamonn, et al.
\newblock "Finding the most unusual time series subsequence: algorithms and applications."
\newblock \emph{Knowledge and Information Systems} 11.1 (2007): 1-27.
\bibitem{keogh2}
Keogh, Eamonn, Stefano Lonardi, and Chotirat Ann Ratanamahatana.
\newblock "Towards parameter-free data mining."
\newblock \emph{Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.} ACM, 2004.
\bibitem{keogh3}
Keogh, Eamonn, et al.
\newblock "Locally adaptive dimensionality reduction for indexing large time series databases."
\newblock \emph{ACM SIGMOD Record.} Vol. 30. No. 2. ACM, 2001.
\bibitem{keogh4}
Keogh, Eamonn, et al.
\newblock "Dimensionality reduction for fast similarity search in large time series databases."
\newblock \emph{Knowledge and information Systems} 3.3 (2001): 263-286.
\bibitem{keogh5}
Keogh, Eamonn, and Shruti Kasetty.
\newblock "On the need for time series data mining benchmarks: a survey and empirical demonstration."
\newblock \emph{Data Mining and Knowledge Discovery} 7.4 (2003): 349-371.
%\bibitem{keogh6}
%Chiu, Bill, Eamonn Keogh, and Stefano Lonardi.
%\newblock "Probabilistic discovery of time series motifs."
%\newblock \emph{Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining.} ACM, 2003.
\bibitem{geurts}
Geurts, Pierre.
\newblock "Pattern extraction for time series classification."
\newblock \emph{Principles of Data Mining and Knowledge Discovery} (2001): 115-127.
\bibitem{fu}
Fu, Ada, et al.
\newblock "Finding time series discords based on haar transform."
\newblock \emph{Advanced Data Mining and Applications} (2006): 31-41.
\bibitem{bu}
Bu, Yingyi, et al.
\newblock "Wat: Finding top-k discords in time series database."
\newblock \emph{SDM}, 2007.
\bibitem{yankov}
Yankov, Dragomir, Eamonn Keogh, and Umaa Rebbapragada.
\newblock "Disk aware discord discovery: Finding unusual time series in terabyte sized datasets."
\newblock \emph{Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on.} IEEE, 2007.
%\bibitem{zaki}
%Sequeira, Karlton, and Mohammed Zaki.
%\newblock "ADMIT: anomaly-based data mining for intrusions."
%\newblock \emph{Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining.} ACM, 2002.
%
\bibitem{lin}
Lin, Jessica, et al.
\newblock "Approximations to magic: Finding unusual medical time series."
\newblock \emph{Computer-Based Medical Systems, 2005. Proceedings. 18th IEEE Symposium on.} IEEE, 2005.
%\bibitem{hotsax}
%Keogh, Eamonn, Jessica Lin, and Ada Fu.
%\newblock "HOT SAX: Efficiently finding the most unusual time series subsequence."
%\newblock \emph{Data Mining, Fifth IEEE International Conference on.} IEEE, 2005.
%
\bibitem{density_estimation}
Venables, William N., and Brian D. Ripley.
\newblock ch. 5.6 "Density Estimation"
\newblock \emph{Modern applied statistics with S.} Springer, 2002.
%\bibitem{smyth}
%Smyth, Padhraic.
%\newblock "Clustering sequences with hidden Markov models."
%\newblock \emph{Advances in neural information processing systems} (1997): 648-654.
\bibitem{chan}
Chan, Philip K., and Matthew V. Mahoney.
\newblock "Modeling multiple time series for anomaly detection."
\newblock \emph{Data Mining, Fifth IEEE International Conference on.} IEEE, 2005.
%%\bibitem{pca1}
%%Jolliffe, Ian.
%%\newblock \emph{Principal component analysis.} John Wiley \& Sons, Ltd, 2005.
%%
%%\bibitem{pca2}
%%Pearson, Karl.
%%\newblock "LIII. On lines and planes of closest fit to systems of points in space."
%%\newblock \emph{The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science} 2.11 (1901): 559-572.
\bibitem{forrest}
Warrender, Christina, Stephanie Forrest, and Barak Pearlmutter.
\newblock "Detecting intrusions using system calls: Alternative data models."
\newblock \emph{Security and Privacy, 1999. Proceedings of the 1999 IEEE Symposium on.} IEEE, 1999.
\bibitem{sax}
Lin, Jessica, et al.
\newblock "Experiencing SAX: a novel symbolic representation of time series."
\newblock \emph{Data Mining and Knowledge Discovery} 15.2 (2007): 107-144.
%\bibitem{andre}
%André-Jönsson, Henrik, and Dushan Badal.
%\newblock "Using signature files for querying time-series data."
%\newblock \emph{Principles of Data Mining and Knowledge Discovery} (1997): 211-220.
%
%\bibitem{daw}
%Daw, C. Stuart, Charles Edward Andrew Finney, and Eugene R. Tracy.
%\newblock "A review of symbolic analysis of experimental data."
%\newblock \emph{Review of Scientific Instruments} 74.2 (2003): 915-930.
%
%\bibitem{huang}
%Huang, Yun-Wu, and Philip S. Yu.
%\newblock "Adaptive query processing for time-series data."
%\newblock \emph{Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining.} ACM, 1999.Huang, Yun-Wu, and Philip S. Yu.
%
%\bibitem{ultsch}
%Mörchen, Fabian, and Alfred Ultsch.
%\newblock "Optimizing time series discretization for knowledge discovery."
%\newblock \emph{Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining}. ACM, 2005.
%
\bibitem{fabian}
Mörchen, Fabian.
\newblock "Time series knowledge mining."
\newblock \emph{Dissertation}. 2006, Philipps-Universität Marburg.
%\bibitem{salvador}
%Salvador, Stan, Philip Chan, and John Brodie.
%\newblock "Learning states and rules for time series anomaly detection."
%\newblock \emph{Proc. 17th Intl. FLAIRS Conf.} 2004.
%\bibitem{moore}
%Davies, Scott, and Andrew Moore.
%\newblock "Mix-nets: Factored mixtures of gaussians in Bayesian networks with mixed continuous and discrete variables."
%\newblock \emph{Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence.} Morgan Kaufmann Publishers Inc., 2000.
%%\bibitem{ghoting1}
%%Ghoting, Amol, Matthew Eric Otey, and Srinivasan Parthasarathy.
%%\newblock "LOADED: Link-based outlier and anomaly detection in evolving data sets."
%%\newblock \emph{Data Mining, 2004. ICDM'04. Fourth IEEE International Conference on.} IEEE, 2004.
%%
%%\bibitem{ghoting2}
%%Ghoting, Amol, Srinivasan Parthasarathy, and Matthew Eric Otey.
%%\newblock "Fast mining of distance-based outliers in high-dimensional datasets."
%%\newblock \emph{Data Mining and Knowledge Discovery} 16.3 (2008): 349-364.
%%
%%\bibitem{johnson}
%%Johnson, Theodore, Ivy Kwok, and Raymond Ng.
%%\newblock "Fast computation of 2-dimensional depth contours."
%%\newblock \emph{Proc. KDD.} Vol. 1998. 1998.
%
%%\bibitem{spiros}
%%Papadimitriou, Spiros, et al.
%%\newblock "LOCI: Fast outlier detection using the local correlation integral."
%%\newblock \emph{Data Engineering, 2003. Proceedings. 19th International Conference on.} IEEE, 2003.
%
%%\bibitem{breunig}
%%Breunig, Markus M., et al.
%%\newblock "LOF: identifying density-based local outliers."
%%\newblock \emph{ACM Sigmod Record.} Vol. 29. No. 2. ACM, 2000.
%
%\bibitem{jagadish}
%Jagadish, H. V., Nick Koudas, and S. Muthukrishnan.
%\newblock "Mining deviants in a time series database."
%\newblock \emph{Proceedings of the 25th International Conference on Very Large Databases.} 1999.
%\bibitem{ming}
%Li, Ming, et al.
%\newblock "The similarity metric."
%\newblock \emph{Information Theory, IEEE Transactions on} 50.12 (2004): 3250-3264.
%
%%\bibitem{mdl}
%%Grünwald, Peter D.
%%\newblock \emph{The minimum description length principle.} MIT press, 2007.
%
\bibitem{xiang}
Lee, Wenke, and Dong Xiang.
\newblock "Information-theoretic measures for anomaly detection."
\newblock \emph{Security and Privacy, 2001. S\&P 2001. Proceedings. 2001 IEEE Symposium on.} IEEE, 2001.
%%\bibitem{information-theory}
%%Cover, Thomas M., and Joy A. Thomas.
%%\newblock \emph{Elements of information theory.} Wiley-interscience, 2006.
%\bibitem{immunology}
%Dasgupta, Dipankar, and Stephanie Forrest.
%\newblock "Novelty detection in time series data using ideas from immunology."
%\newblock \emph{Proceedings of the International Conference on Intelligent Systems}. 1996.
%
%\bibitem{immunology2}
%González, Fabio A., and Dipankar Dasgupta.
%\newblock "Anomaly detection using real-valued negative selection."
%\newblock \emph{Genetic Programming and Evolvable Machines} 4.4 (2003): 383-403.
%\bibitem{tarzan}
%Keogh, Eamonn, Stefano Lonardi, and Bill'Yuan-chi Chiu.
%\newblock "Finding surprising patterns in a time series database in linear time and space."
%\newblock \emph{Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining.} ACM, 2002.
\bibitem{gopala}
Chen, Scott, and Ponani Gopalakrishnan.
\newblock "Speaker, environment and channel change detection and clustering via the Bayesian Information Criterion."
\newblock \emph{Proc. DARPA Broadcast News Transcription and Understanding Workshop.} 1998.
\bibitem{radke}
Radke, Richard J., et al.
\newblock "Image change detection algorithms: a systematic survey."
\newblock \emph{Image Processing, IEEE Transactions on} 14.3 (2005): 294-307.
\bibitem{clustering}
Jain, Anil K., M. Narasimha Murty, and Patrick J. Flynn.
\newblock "Data clustering: a review."
\newblock \emph{PACM computing surveys (CSUR)} 31.3 (1999): 264-323.
\bibitem{motif}
Sandve, Geir Kjetil, and Finn Drablos.
\newblock "A survey of motif discovery methods in an integrated framework."
\newblock \emph{Biol Direct} 1.11 (2006).
\bibitem{motif2}
Tanaka, Yoshiki, Kazuhisa Iwamoto, and Kuniaki Uehara.
\newblock "Discovery of time-series motif from multi-dimensional data based on mdl principle."
\newblock \emph{Machine Learning} 58.2 (2005): 269-300.
\bibitem{cepstrum}
Kalpakis, Konstantinos, Dhiral Gada, and Vasundhara Puttagunta.
\newblock "Distance measures for effective clustering of ARIMA time-series."
\newblock \emph{Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on.} IEEE, 2001.
\bibitem{classification}
Tax, David MJ.
\newblock "One-class classification."
\newblock \emph{Dissertation.} University of Delft, 2001.
\bibitem{autocorrelation}
Wang, Changzhou, and X. Sean Wang.
\newblock "Supporting content-based searches on time series via approximation."
\newblock \emph{Scientific and Statistical Database Management, 2000. Proceedings. 12th International Conference on.} IEEE, 2000.
\bibitem{dtw}
Berndt, D., and James Clifford.
\newblock "Using dynamic time warping to find patterns in time series."
\newblock \emph{KDD workshop.} Vol. 10. No. 16. 1994.
\end{thebibliography}