-
Notifications
You must be signed in to change notification settings - Fork 20
/
utils.py
358 lines (312 loc) · 13.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import math
import os
from glob import glob
import cv2
import numpy as np
import torch
import yaml
from torch import nn
from torch import optim
from torchvision import utils
from easydict import EasyDict
from model import StyledGenerator, Discriminator, NFramesDiscriminator, \
StyleChangeMode, NoiseChangeMode
import constants
from logger import LOGGER
def format_for_lmdb(*args):
key_parts = []
for arg in args:
if isinstance(arg, int):
arg = str(arg).zfill(7)
key_parts.append(arg)
return '-'.join(key_parts).encode('utf-8')
def load_yaml(path: str) -> dict:
with open(path, 'r') as fin:
result = yaml.load(fin, Loader=yaml.FullLoader)
return result
def get_latents(shape, code_size, num=None):
if isinstance(shape, int):
shape = [shape]
latents = torch.randn(num or 1, *shape, code_size, device='cuda')
if num is not None:
return list(latents)
else:
return latents[0]
@torch.no_grad()
def get_mean_style(generator, device, code_size=512, batches_n=100):
mean_style = None
batch_size = 1024
for i in range(batches_n):
style = generator.mean_style(get_latents(batch_size, code_size))
if mean_style is None:
mean_style = style
else:
mean_style += style
mean_style /= batches_n
return mean_style
def get_sample_row_col(resolution, sample_size=constants.SAMPLE_SIZE):
return (sample_size[0] // resolution, sample_size[1] // resolution)
def save_image_samples(save_dir, name, latents, nrow, ncol, generator, step, alpha,
mean_style, truncation_psi, n_frames, inversed=False, separate_files=False):
assert not separate_files or ncol == 1, 'When save samples in separate_files ncol should be 1.'
images = []
for i in range(nrow):
imgs = generator(latents[i], step=step, alpha=alpha, mean_style=mean_style,
style_weight=truncation_psi, n_frames=n_frames, inversed=inversed)
imgs = imgs.data.cpu()
if separate_files:
utils.save_image(
imgs,
os.path.join(save_dir, f'{i}_{name}.jpg'),
nrow=ncol,
normalize=True,
range=(-1, 1),
)
else:
images.append(imgs)
if not separate_files:
images = torch.stack(images, dim=2).transpose(0, 2)
images = images.reshape(images.shape[0] * images.shape[1] * images.shape[2], *images.shape[3:])
utils.save_image(
images,
os.path.join(save_dir, name + '.jpg'),
nrow=ncol,
normalize=True,
range=(-1, 1),
)
def write_video(out_path, frames, fps=constants.FPS):
"""Save 4d tensor as mp4 file
:param out_path: str, where to save the video
:param frames: FramesN x Channels x Height x Width float tensor with values from range [0, 1]
"""
frames = frames[:, [2, 1, 0]]
frames = (frames * 255).byte().detach().cpu().numpy()
frames = np.transpose(frames, (0, 2, 3, 1))
num_frames, height, width, channels_n = frames.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
try:
for frame in frames:
writer.write(frame)
finally:
writer.release()
def get_homographies(homography_dir):
if homography_dir is None:
return None
homographies = []
for path in glob(os.path.join(homography_dir, '*.csv')):
with open(path) as f:
shifts = f.readlines()
shifts = (s.strip().split() for s in shifts)
shifts = [(float(s[0]), float(s[1])) for s in shifts]
homographies.append([[shifts[0], shifts[1]], [shifts[2], shifts[3]]])
return homographies
def save_video_samples(save_dir, name, latents, nrow, ncol,
generator, step, alpha, mean_style, truncation_psi, resolution,
style_change_mode, noise_change_modes,
n_frames, inversed=False, homography_dir=None,
separate_files=False, save_frames=False):
assert not separate_files or ncol == 1, 'When save samples in separate_files ncol should be 1.'
if save_frames:
os.makedirs(os.path.join(save_dir, 'frames'), exist_ok=True)
images = []
for i in range(nrow):
for j in range(ncol):
image = generator(
[z[[j]] for z in latents[i]],
step=step,
alpha=alpha,
n_frames=n_frames,
style_change_mode=style_change_mode,
noise_change_modes=noise_change_modes,
mean_style=mean_style,
style_weight=truncation_psi,
inversed=inversed,
homographies=get_homographies(homography_dir),
)
if separate_files:
video = []
for i_f in range(n_frames):
frame = utils.make_grid(
image[0][i_f],
nrow=ncol,
normalize=True,
range=(-1, 1),
)
if save_frames:
utils.save_image(frame, os.path.join(save_dir, 'frames', f'{name}_{i_f}.jpg'), nrow=1)
video.append(frame)
video = torch.stack(video)
write_video(os.path.join(save_dir, name + '.mp4'), video)
else:
images.append(image.data.cpu())
if not separate_files:
images = torch.cat(images, dim=0)
video = []
for i_f in range(n_frames):
frame = utils.make_grid(
images[:, i_f],
nrow=ncol,
normalize=True,
range=(-1, 1),
)
if save_frames:
utils.save_image(frame, os.path.join(save_dir, 'frames', f'{name}_frame_{i_f}.jpg'), nrow=1)
video.append(frame)
video = torch.stack(video)
write_video(os.path.join(save_dir, name + '.mp4'), video)
def save_sample(generator, alpha, step, code_size, resolution, save_dir, name,
sample_size=constants.SAMPLE_SIZE, fixed_latents=True,
truncation_psi=constants.TRUNCATION_PSI,
images_n_frames=constants.IMAGE_N_FRAMES, video_n_frames=constants.VIDEO_N_FRAMES,
mixing=True, save_images=True, save_video=True,
style_change_mode=StyleChangeMode.INTERPOLATE,
noise_change_modes=tuple([NoiseChangeMode.SHIFT]*constants.MAX_LAYERS_NUM),
inversed=False, homography_dir=None,
separate_files=False, num_files=1, save_frames=False):
os.makedirs(save_dir, exist_ok=True)
generator.eval()
for i in range(num_files):
if num_files > 1:
save_name = name + f'_{i}'
else:
save_name = name
with torch.no_grad():
if truncation_psi is not None:
mean_style = get_mean_style(generator, 'cuda', code_size)
else:
mean_style = None
if separate_files:
nrow = num_files
ncol = 1
else:
nrow, ncol = get_sample_row_col(resolution, sample_size)
latents = get_latents((nrow, ncol), code_size, constants.MIXING_NUM)
if not mixing:
latents = latents[:1]
latents = list(zip(*latents)) # nrow tuples of ncol x code_size
if save_images:
img_nrow = max(nrow // images_n_frames, 1)
save_image_samples(save_dir, save_name, latents[:img_nrow], 1, ncol,
generator, step, alpha, mean_style, truncation_psi,
images_n_frames, inversed, separate_files)
if save_video:
save_video_samples(save_dir, save_name, latents, 1, ncol,
generator, step, alpha, mean_style,
truncation_psi, resolution,
style_change_mode, noise_change_modes,
video_n_frames, inversed, homography_dir,
separate_files, save_frames)
def get_last_model(model_name, from_step=False):
LOGGER.debug(f'Model checkpoint directory: {os.path.join(constants.CHECKPOINT_DIR, model_name)}')
if from_step:
model_paths = glob(os.path.join(constants.CHECKPOINT_DIR, model_name) + '/train_step-*.model')
LOGGER.debug(f'Model paths: {model_paths}')
last_step = max([int(os.path.basename(mp)[len('train_step-'):-len('.model')]) for mp in model_paths])
last_model_path = os.path.join(constants.CHECKPOINT_DIR, model_name, f'train_step-{last_step}.model')
else:
model_paths = glob(os.path.join(constants.CHECKPOINT_DIR, model_name) + '/[!train_step-]*.model')
LOGGER.debug(f'Model paths: {model_paths}')
last_iter = max([int(os.path.basename(mp)[: -len('.model')]) for mp in model_paths])
last_model_path = os.path.join(constants.CHECKPOINT_DIR, model_name, f'{str(last_iter).zfill(6)}.model')
LOGGER.info(f'Loading {last_model_path} (last)')
model = torch.load(last_model_path)
return model
def accumulate(*, from_model, to_model, decay=0.999):
from_params = dict(from_model.named_parameters())
to_params = dict(to_model.named_parameters())
for k in from_params.keys():
to_params[k].data.mul_(decay).add_(from_params[k].data, alpha=(1 - decay))
def get_model(model_name, config, iteration=None, restart=False, from_step=False, load_discriminator=True,
alpha=1, step=6, resolution=256, used_samples=0):
"""
Function that creates a model.
Arguments:
model_name -- name to use for save and load the model.
config -- dict of model parameters.
iteration -- iteration to load; last if None
restart -- if true, than creates new model even there is a saved model with `model_name`.
"""
LOGGER.info(f'Getting model "{model_name}"')
code_size = config.get('code_size', constants.DEFAULT_CODE_SIZE)
init_size = config.get('init_size', constants.INIT_SIZE)
n_frames_params = config.get('n_frames_params', dict())
n_frames = n_frames_params.get('n', 1)
from_rgb_activate = config['from_rgb_activate']
two_noises = n_frames_params.get('two_noises', False)
lr = config.get('lr', constants.LR)
dyn_style_coordinates = n_frames_params.get('dyn_style_coordinates', 0)
generator = nn.DataParallel(StyledGenerator(code_size,
two_noises=two_noises,
dyn_style_coordinates=dyn_style_coordinates,
)).cuda()
g_running = StyledGenerator(code_size,
two_noises=two_noises,
dyn_style_coordinates=dyn_style_coordinates,
).cuda()
g_running.train(False)
discriminator = nn.DataParallel(Discriminator(from_rgb_activate=from_rgb_activate)).cuda()
n_frames_discriminator = nn.DataParallel(
NFramesDiscriminator(from_rgb_activate=from_rgb_activate, n_frames=n_frames)
).cuda()
if not restart:
if iteration is None:
model = get_last_model(model_name, from_step)
else:
iteration = str(iteration).zfill(6)
checkpoint_path = os.path.join(constants.CHECKPOINT_DIR, model_name, f'{iteration}.model')
LOGGER.info(f'Loading {checkpoint_path}')
model = torch.load(checkpoint_path)
generator.module.load_state_dict(model['generator'])
g_running.load_state_dict(model['g_running'])
if load_discriminator:
discriminator.module.load_state_dict(model['discriminator'])
if 'n_frames_params' in config:
n_frames_discriminator.module.load_state_dict(model['n_frames_discriminator'])
alpha = model['alpha']
step = model['step']
LOGGER.debug(f'Step: {step}')
resolution = model['resolution']
used_samples = model['used_samples']
LOGGER.debug(f'Used samples: {used_samples}.')
iteration = model['iteration']
else:
alpha = 0
step = int(math.log2(init_size)) - 2
resolution = 4 * 2 ** step
used_samples = 0
iteration = 0
accumulate(to_model=g_running, from_model=generator.module, decay=0)
g_optimizer = optim.Adam(
generator.module.generator.parameters(),
lr=lr[resolution], betas=(0.0, 0.99)
)
style_module = generator.module
style_params = list(style_module.style.parameters())
g_optimizer.add_param_group(
{
'params': style_params,
'lr': lr[resolution] * 0.01,
'mult': 0.01,
}
)
d_optimizer = optim.Adam(discriminator.parameters(), lr=lr[resolution], betas=(0.0, 0.99))
nfd_optimizer = optim.Adam(n_frames_discriminator.parameters(), lr=lr[resolution], betas=(0.0, 0.99))
if not restart:
g_optimizer.load_state_dict(model['g_optimizer'])
d_optimizer.load_state_dict(model['d_optimizer'])
nfd_optimizer.load_state_dict(model['nfd_optimizer'])
return EasyDict(
generator=generator,
discriminator=discriminator,
n_frames_discriminator=n_frames_discriminator,
g_running=g_running,
g_optimizer=g_optimizer,
d_optimizer=d_optimizer,
nfd_optimizer=nfd_optimizer,
alpha=alpha,
step=step,
resolution=resolution,
used_samples=used_samples,
iteration=iteration,
)