-
Notifications
You must be signed in to change notification settings - Fork 245
/
net.py
233 lines (193 loc) · 7.27 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#encoding:utf-8
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import math
import torch.nn.functional as F
__all__ = [
'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
'vgg19_bn', 'vgg19',
]
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}
class VGG(nn.Module):
def __init__(self, features, num_classes=1000, image_size=448):
super(VGG, self).__init__()
self.features = features
self.image_size = image_size
# self.classifier = nn.Sequential(
# nn.Linear(512 * 7 * 7, 4096),
# nn.ReLU(True),
# nn.Dropout(),
# nn.Linear(4096, 4096),
# nn.ReLU(True),
# nn.Dropout(),
# nn.Linear(4096, num_classes),
# )
# if self.image_size == 448:
# self.extra_conv1 = conv_bn_relu(512,512)
# self.extra_conv2 = conv_bn_relu(512,512)
# self.downsample = nn.MaxPool2d(kernel_size=2, stride=2)
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 1470),
)
self._initialize_weights()
def forward(self, x):
x = self.features(x)
# if self.image_size == 448:
# x = self.extra_conv1(x)
# x = self.extra_conv2(x)
# x = self.downsample(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
x = F.sigmoid(x) #归一化到0-1
x = x.view(-1,7,7,30)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
s = 1
first_flag=True
for v in cfg:
s=1
if (v==64 and first_flag):
s=2
first_flag=False
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, stride=s, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
def conv_bn_relu(in_channels,out_channels,kernel_size=3,stride=2,padding=1):
return nn.Sequential(
nn.Conv2d(in_channels,out_channels,kernel_size=kernel_size,padding=padding,stride=stride),
nn.BatchNorm2d(out_channels),
nn.ReLU(True)
)
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg11(pretrained=False, **kwargs):
"""VGG 11-layer model (configuration "A")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['A']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg11']))
return model
def vgg11_bn(pretrained=False, **kwargs):
"""VGG 11-layer model (configuration "A") with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['A'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg11_bn']))
return model
def vgg13(pretrained=False, **kwargs):
"""VGG 13-layer model (configuration "B")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['B']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg13']))
return model
def vgg13_bn(pretrained=False, **kwargs):
"""VGG 13-layer model (configuration "B") with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['B'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg13_bn']))
return model
def vgg16(pretrained=False, **kwargs):
"""VGG 16-layer model (configuration "D")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['D']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg16']))
return model
def vgg16_bn(pretrained=False, **kwargs):
"""VGG 16-layer model (configuration "D") with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['D'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg16_bn']))
return model
def vgg19(pretrained=False, **kwargs):
"""VGG 19-layer model (configuration "E")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['E']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
return model
def vgg19_bn(pretrained=False, **kwargs):
"""VGG 19-layer model (configuration 'E') with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['E'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg19_bn']))
return model
def test():
import torch
from torch.autograd import Variable
model = vgg16()
model.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 1470),
)
print(model.classifier[6])
#print(model)
img = torch.rand(2,3,224,224)
img = Variable(img)
output = model(img)
print(output.size())
if __name__ == '__main__':
test()