Skip to content

Deep Crossing

潜心 edited this page Sep 12, 2020 · 5 revisions

Deep Crossing

1. 论文

Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features

创新:采用残差连接

原文笔记:https://mp.weixin.qq.com/s/WXnvkoRFxwFpflStAuW7kQ

2. 模型结构

3. 实验数据集

采用Criteo数据集进行测试。数据集的处理见utils文件,主要分为:

  1. 考虑到Criteo文件过大,因此可以通过read_partsample_sum读取部分数据进行测试;
  2. 对缺失数据进行填充;
  3. 对密集数据I1-I13进行归一化处理,对稀疏数据C1-C26进行重新编码LabelEncoder
  4. 整理得到feature_columns
  5. 切分数据集,最后返回feature_columns, (train_X, train_y), (test_X, test_y)

4. 模型API

class Deep_Crossing(keras.Model):
    def __init__(self, feature_columns, hidden_units, res_dropout=0., embed_reg=1e-4):
        """
        Deep&Crossing
        :param feature_columns: A list. dense_feature_columns + sparse_feature_columns
        :param hidden_units: A list. Neural network hidden units.
        :param res_dropout: A scalar. Dropout of resnet.
        :param embed_reg: A scalar. The regularizer of embedding.
        """

5. 实验超参数

  • file:Criteo文件;
  • read_part:是否读取部分数据,True
  • sample_num:读取部分时,样本数量,5000000
  • test_size:测试集比例,0.2
  • embed_dim:Embedding维度,8
  • dnn_dropout:Dropout, 0.5
  • hidden_unit:DNN的隐藏单元,[256, 128, 64]
  • learning_rate:学习率,0.001
  • batch_size:4096
  • epoch:10

6. 实验结果

采用Criteo数据集中前500w条数据,最终测试集的结果为:AUC:0.791312

Experimental dataset

Model

Clone this wiki locally