-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_student2en.py
77 lines (62 loc) · 2.92 KB
/
eval_student2en.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import argparse
import os
import torch
from transformers import MarianMTModel, MarianTokenizer
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
def load_model_tokenizer(model_path, tokenizer_path):
model = MarianMTModel.from_pretrained(model_path)
tokenizer = MarianTokenizer.from_pretrained(tokenizer_path)
return model, tokenizer
class InferenceDataset(Dataset):
def __init__(self, source_texts, tokenizer, max_length=512):
self.source_texts = source_texts
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.source_texts)
def __getitem__(self, idx):
source_text = self.source_texts[idx]
source_encoding = self.tokenizer(
source_text,
padding="max_length",
truncation=True,
max_length=self.max_length,
return_tensors="pt",
)
return {
"input_ids": source_encoding["input_ids"].squeeze(),
"attention_mask": source_encoding["attention_mask"].squeeze(),
}
def create_inference_dataloader(source_texts, tokenizer, batch_size=32, max_length=512):
dataset = InferenceDataset(source_texts, tokenizer, max_length)
return DataLoader(dataset, batch_size=batch_size, shuffle=False)
def translate(args):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model, tokenizer = load_model_tokenizer(args.model_path, args.tokenizer_path)
model.to(device)
model.eval()
with open(args.input_file, "r") as file:
source_texts = file.readlines()
inference_dataloader = create_inference_dataloader(source_texts, tokenizer, batch_size=args.batch_size)
translated_texts = []
for batch in tqdm(inference_dataloader):
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
with torch.no_grad(): # use beam search for inference
outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask, num_beams=1,do_sample=False)
batch_translated_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
translated_texts.extend(batch_translated_texts)
with open(args.output_file, "w") as file:
file.write("\n".join(translated_texts) + "\n")
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, help='Path to the model')
parser.add_argument('--tokenizer_path', type=str, help='Path to the tokenizer')
parser.add_argument('--input_file', type=str, required=True, help='Input file with sentences to translate')
parser.add_argument('--output_file', type=str, required=True, help='Output file for translations')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size for inference')
args = parser.parse_args()
translate(args)
if __name__ == "__main__":
main()