forked from vinhkhuc/PyTorch-Mini-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
5_convolutional_net.py
91 lines (68 loc) · 2.71 KB
/
5_convolutional_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import torch
from torch.autograd import Variable
from torch import optim
from data_util import load_mnist
# We need to create two sequential models here since PyTorch doesn't have nn.View()
class ConvNet(torch.nn.Module):
def __init__(self, output_dim):
super(ConvNet, self).__init__()
self.conv = torch.nn.Sequential()
self.conv.add_module("conv_1", torch.nn.Conv2d(1, 10, kernel_size=5))
self.conv.add_module("maxpool_1", torch.nn.MaxPool2d(kernel_size=2))
self.conv.add_module("relu_1", torch.nn.ReLU())
self.conv.add_module("conv_2", torch.nn.Conv2d(10, 20, kernel_size=5))
self.conv.add_module("dropout_2", torch.nn.Dropout())
self.conv.add_module("maxpool_2", torch.nn.MaxPool2d(kernel_size=2))
self.conv.add_module("relu_2", torch.nn.ReLU())
self.fc = torch.nn.Sequential()
self.fc.add_module("fc1", torch.nn.Linear(320, 50))
self.fc.add_module("relu_3", torch.nn.ReLU())
self.fc.add_module("dropout_3", torch.nn.Dropout())
self.fc.add_module("fc2", torch.nn.Linear(50, output_dim))
def forward(self, x):
x = self.conv.forward(x)
x = x.view(-1, 320)
return self.fc.forward(x)
def train(model, loss, optimizer, x_val, y_val):
x = Variable(x_val, requires_grad=False)
y = Variable(y_val, requires_grad=False)
# Reset gradient
optimizer.zero_grad()
# Forward
fx = model.forward(x)
output = loss.forward(fx, y)
# Backward
output.backward()
# Update parameters
optimizer.step()
return output.item()
def predict(model, x_val):
x = Variable(x_val, requires_grad=False)
output = model.forward(x)
return output.data.numpy().argmax(axis=1)
def main():
torch.manual_seed(42)
trX, teX, trY, teY = load_mnist(onehot=False)
trX = trX.reshape(-1, 1, 28, 28)
teX = teX.reshape(-1, 1, 28, 28)
trX = torch.from_numpy(trX).float()
teX = torch.from_numpy(teX).float()
trY = torch.from_numpy(trY).long()
n_examples = len(trX)
n_classes = 10
model = ConvNet(output_dim=n_classes)
loss = torch.nn.CrossEntropyLoss(reduction='elementwise_mean')
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
batch_size = 100
for i in range(20):
cost = 0.
num_batches = n_examples // batch_size
for k in range(num_batches):
start, end = k * batch_size, (k + 1) * batch_size
cost += train(model, loss, optimizer, trX[start:end], trY[start:end])
predY = predict(model, teX)
print("Epoch %d, cost = %f, acc = %.2f%%"
% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))
if __name__ == "__main__":
main()