forked from vinhkhuc/PyTorch-Mini-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
2_logistic_regression.py
72 lines (53 loc) · 1.87 KB
/
2_logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import torch
from torch.autograd import Variable
from torch import optim
from data_util import load_mnist
def build_model(input_dim, output_dim):
# We don't need the softmax layer here since CrossEntropyLoss already
# uses it internally.
model = torch.nn.Sequential()
model.add_module("linear",
torch.nn.Linear(input_dim, output_dim, bias=False))
return model
def train(model, loss, optimizer, x_val, y_val):
x = Variable(x_val, requires_grad=False)
y = Variable(y_val, requires_grad=False)
# Reset gradient
optimizer.zero_grad()
# Forward
fx = model.forward(x)
output = loss.forward(fx, y)
# Backward
output.backward()
# Update parameters
optimizer.step()
return output.item()
def predict(model, x_val):
x = Variable(x_val, requires_grad=False)
output = model.forward(x)
return output.data.numpy().argmax(axis=1)
def main():
torch.manual_seed(42)
trX, teX, trY, teY = load_mnist(onehot=False)
trX = torch.from_numpy(trX).float()
teX = torch.from_numpy(teX).float()
trY = torch.from_numpy(trY).long()
n_examples, n_features = trX.size()
n_classes = 10
model = build_model(n_features, n_classes)
loss = torch.nn.CrossEntropyLoss(reduction='elementwise_mean')
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
batch_size = 100
for i in range(100):
cost = 0.
num_batches = n_examples // batch_size
for k in range(num_batches):
start, end = k * batch_size, (k + 1) * batch_size
cost += train(model, loss, optimizer,
trX[start:end], trY[start:end])
predY = predict(model, teX)
print("Epoch %d, cost = %f, acc = %.2f%%"
% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))
if __name__ == "__main__":
main()