forked from edrosten/TooN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
GR_SVD.h
529 lines (480 loc) · 14.5 KB
/
GR_SVD.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
// -*- c++ -*-
// Copyright (C) 2009 Georg Klein ([email protected])
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND OTHER CONTRIBUTORS ``AS IS''
//AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR OTHER CONTRIBUTORS BE
//LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
#ifndef __GR_SVD_H
#define __GR_SVD_H
#include <TooN/TooN.h>
#include <cmath>
#include <vector>
#include <algorithm>
namespace TooN
{
/**
@class GR_SVD TooN/GR_SVD.h
Performs SVD and back substitute to solve equations.
This code is a c++ translation of the FORTRAN routine give in
George E. Forsythe et al, Computer Methods for Mathematical
Computations, Prentice-Hall 1977. That code itself is a
translation of the ALGOL routine by Golub and Reinsch,
Num. Math. 14, 403-420, 1970.
N.b. the singular values returned by this routine are not sorted.
N.b. this also means that even for MxN matrices with M<N, N
singular values are computed and used.
The template parameters WANT_U and WANT_V may be set to false to
indicate that U and/or V are not needed for a minor speed-up.
@ingroup gDecomps
**/
template<int M, int N = M, class Precision = DefaultPrecision, bool WANT_U = 1, bool WANT_V = 1>
class GR_SVD
{
public:
template<class Precision2, class Base> GR_SVD(const Matrix<M, N, Precision2, Base> &A);
static const int BigDim = M>N?M:N;
static const int SmallDim = M<N?M:N;
const Matrix<M,N,Precision>& get_U() { if(!WANT_U) throw(0); return mU;}
const Matrix<N,N,Precision>& get_V() { if(!WANT_V) throw(0); return mV;}
const Vector<N, Precision>& get_diagonal() {return vDiagonal;}
Precision get_largest_singular_value();
Precision get_smallest_singular_value();
int get_smallest_singular_value_index();
///Return the pesudo-inverse diagonal. The reciprocal of the diagonal elements
///is returned if the elements are well scaled with respect to the largest element,
///otherwise 0 is returned.
///@param inv_diag Vector in which to return the inverse diagonal.
///@param condition Elements must be larger than this factor times the largest diagonal element to be considered well scaled.
void get_inv_diag(Vector<N>& inv_diag, const Precision condition)
{
Precision dMax = get_largest_singular_value();
for(int i=0; i<N; ++i)
inv_diag[i] = (vDiagonal[i] * condition > dMax) ?
static_cast<Precision>(1)/vDiagonal[i] : 0;
}
/// Calculate result of multiplying the (pseudo-)inverse of M by another matrix.
/// For a matrix \f$A\f$, this calculates \f$M^{\dagger}A\f$ by back substitution
/// (i.e. without explictly calculating the (pseudo-)inverse).
/// See the detailed description for a description of condition variables.
template <int Rows2, int Cols2, typename P2, typename B2>
Matrix<N,Cols2, typename Internal::MultiplyType<Precision,P2>::type >
backsub(const Matrix<Rows2,Cols2,P2,B2>& rhs, const Precision condition=1e9)
{
Vector<N,Precision> inv_diag;
get_inv_diag(inv_diag,condition);
return (get_V() * diagmult(inv_diag, (get_U().T() * rhs)));
}
/// Calculate result of multiplying the (pseudo-)inverse of M by a vector.
/// For a vector \f$b\f$, this calculates \f$M^{\dagger}b\f$ by back substitution
/// (i.e. without explictly calculating the (pseudo-)inverse).
/// See the detailed description for a description of condition variables.
template <int Size, typename P2, typename B2>
Vector<N, typename Internal::MultiplyType<Precision,P2>::type >
backsub(const Vector<Size,P2,B2>& rhs, const Precision condition=1e9)
{
Vector<N,Precision> inv_diag;
get_inv_diag(inv_diag,condition);
return (get_V() * diagmult(inv_diag, (get_U().T() * rhs)));
}
/// Get the pseudo-inverse \f$M^{\dagger}\f$
Matrix<N,M,Precision> get_pinv(const Precision condition=1e9)
{
Vector<N,Precision> inv_diag(N);
get_inv_diag(inv_diag,condition);
return diagmult(get_V(),inv_diag) * get_U().T();
}
/// Reorder the components so the singular values are in descending order
void reorder();
protected:
void Bidiagonalize();
void Accumulate_RHS();
void Accumulate_LHS();
void Diagonalize();
bool Diagonalize_SubLoop(int k, Precision &z);
Vector<N,Precision> vDiagonal;
Vector<BigDim, Precision> vOffDiagonal;
Matrix<M, N, Precision> mU;
Matrix<N, N, Precision> mV;
int nError;
int nIterations;
Precision anorm;
};
template<int M, int N, class Precision, bool WANT_U, bool WANT_V>
template<class Precision2, class Base>
GR_SVD<M, N, Precision, WANT_U, WANT_V>::GR_SVD(const Matrix<M, N, Precision2, Base> &mA)
{
nError = 0;
mU = mA;
Bidiagonalize();
Accumulate_RHS();
Accumulate_LHS();
Diagonalize();
};
template<int M, int N, class Precision, bool WANT_U, bool WANT_V>
void GR_SVD<M,N,Precision, WANT_U, WANT_V>::Bidiagonalize()
{
using std::abs;
using std::max;
using std::sqrt;
// ------------ Householder reduction to bidiagonal form
Precision g = 0.0;
Precision scale = 0.0;
anorm = 0.0;
for(int i=0; i<N; ++i) // 300
{
const int l = i+1;
vOffDiagonal[i] = scale * g;
g = 0.0;
Precision s = 0.0;
scale = 0.0;
if( i < M )
{
for(int k=i; k<M; ++k)
scale += abs(mU[k][i]);
if(scale != 0.0)
{
for(int k=i; k<M; ++k)
{
mU[k][i] /= scale;
s += mU[k][i] * mU[k][i];
}
Precision f = mU[i][i];
g = -(f>=0?sqrt(s):-sqrt(s));
Precision h = f * g - s;
mU[i][i] = f - g;
if(i!=(N-1))
{
for(int j=l; j<N; ++j)
{
s = 0.0;
for(int k=i; k<M; ++k)
s += mU[k][i] * mU[k][j];
f = s / h;
for(int k=i; k<M; ++k)
mU[k][j] += f * mU[k][i];
} // 150
}// 190
for(int k=i; k<M; ++k)
mU[k][i] *= scale;
} // 210
} // 210
vDiagonal[i] = scale * g;
g = 0.0;
s = 0.0;
scale = 0.0;
if(!(i >= M || i == (N-1)))
{
for(int k=l; k<N; ++k)
scale += abs(mU[i][k]);
if(scale != 0.0)
{
for(int k=l; k<N; k++)
{
mU[i][k] /= scale;
s += mU[i][k] * mU[i][k];
}
Precision f = mU[i][l];
g = -(f>=0?sqrt(s):-sqrt(s));
Precision h = f * g - s;
mU[i][l] = f - g;
for(int k=l; k<N; ++k)
vOffDiagonal[k] = mU[i][k] / h;
if(i != (M-1)) // 270
{
for(int j=l; j<M; ++j)
{
s = 0.0;
for(int k=l; k<N; ++k)
s += mU[j][k] * mU[i][k];
for(int k=l; k<N; ++k)
mU[j][k] += s * vOffDiagonal[k];
} // 260
} // 270
for(int k=l; k<N; ++k)
mU[i][k] *= scale;
} // 290
} // 290
anorm = max(anorm, abs(vDiagonal[i]) + abs(vOffDiagonal[i]));
} // 300
// Accumulation of right-hand transformations
}
template<int M, int N, class Precision, bool WANT_U, bool WANT_V>
void GR_SVD<M,N,Precision,WANT_U,WANT_V>::Accumulate_RHS()
{
// Get rid of fakey loop over ii, do a loop over i directly
// This here would happen on the first run of the loop with
// i = N-1
mV[N-1][N-1] = static_cast<Precision>(1);
Precision g = vOffDiagonal[N-1];
// The loop
for(int i=N-2; i>=0; --i) // 400
{
const int l = i + 1;
if( g!=0) // 360
{
for(int j=l; j<N; ++j)
mV[j][i] = (mU[i][j] / mU[i][l]) / g; // double division avoids possible underflow
for(int j=l; j<N; ++j)
{ // 350
Precision s = 0;
for(int k=l; k<N; ++k)
s += mU[i][k] * mV[k][j];
for(int k=l; k<N; ++k)
mV[k][j] += s * mV[k][i];
} // 350
} // 360
for(int j=l; j<N; ++j)
mV[i][j] = mV[j][i] = 0;
mV[i][i] = static_cast<Precision>(1);
g = vOffDiagonal[i];
} // 400
}
template<int M, int N, class Precision, bool WANT_U, bool WANT_V>
void GR_SVD<M,N,Precision,WANT_U,WANT_V>::Accumulate_LHS()
{
// Same thing; remove loop over dummy ii and do straight over i
// Some implementations start from N here
for(int i=SmallDim-1; i>=0; --i)
{ // 500
const int l = i+1;
Precision g = vDiagonal[i];
// SqSVD here uses i<N ?
if(i != (N-1))
for(int j=l; j<N; ++j)
mU[i][j] = 0.0;
if(g == 0.0)
for(int j=i; j<M; ++j)
mU[j][i] = 0.0;
else
{ // 475
// Can pre-divide g here
Precision inv_g = static_cast<Precision>(1) / g;
if(i != (SmallDim-1))
{ // 460
for(int j=l; j<N; ++j)
{ // 450
Precision s = 0;
for(int k=l; k<M; ++k)
s += mU[k][i] * mU[k][j];
Precision f = (s / mU[i][i]) * inv_g; // double division
for(int k=i; k<M; ++k)
mU[k][j] += f * mU[k][i];
} // 450
} // 460
for(int j=i; j<M; ++j)
mU[j][i] *= inv_g;
} // 475
mU[i][i] += static_cast<Precision>(1);
} // 500
}
template<int M, int N, class Precision,bool WANT_U, bool WANT_V>
void GR_SVD<M,N,Precision,WANT_U,WANT_V>::Diagonalize()
{
// Loop directly over descending k
for(int k=N-1; k>=0; --k)
{ // 700
nIterations = 0;
Precision z;
bool bConverged_Or_Error = false;
do
bConverged_Or_Error = Diagonalize_SubLoop(k, z);
while(!bConverged_Or_Error);
if(nError)
return;
if(z < 0)
{
vDiagonal[k] = -z;
if(WANT_V)
for(int j=0; j<N; ++j)
mV[j][k] = -mV[j][k];
}
} // 700
};
template<int M, int N, class Precision, bool WANT_U, bool WANT_V>
bool GR_SVD<M,N,Precision,WANT_U, WANT_V>::Diagonalize_SubLoop(int k, Precision &z)
{
using std::abs;
using std::sqrt;
const int k1 = k-1;
// 520 is here!
for(int l=k; l>=0; --l)
{ // 530
const int l1 = l-1;
if((abs(vOffDiagonal[l]) + anorm) == anorm)
goto line_565;
if((abs(vDiagonal[l1]) + anorm) == anorm)
goto line_540;
continue;
line_540:
{
Precision c = 0;
Precision s = 1.0;
for(int i=l; i<=k; ++i)
{ // 560
Precision f = s * vOffDiagonal[i];
vOffDiagonal[i] *= c;
if((abs(f) + anorm) == anorm)
break; // goto 565, effectively
Precision g = vDiagonal[i];
Precision h = sqrt(f * f + g * g); // Other implementations do this bit better
vDiagonal[i] = h;
c = g / h;
s = -f / h;
if(WANT_U)
for(int j=0; j<M; ++j)
{
Precision y = mU[j][l1];
Precision z = mU[j][i];
mU[j][l1] = y*c + z*s;
mU[j][i] = -y*s + z*c;
}
} // 560
}
line_565:
{
// Check for convergence..
z = vDiagonal[k];
if(l == k)
return true; // convergence.
if(nIterations == 30)
{
nError = k;
return true;
}
++nIterations;
Precision x = vDiagonal[l];
Precision y = vDiagonal[k1];
Precision g = vOffDiagonal[k1];
Precision h = vOffDiagonal[k];
Precision f = ((y-z)*(y+z) + (g-h)*(g+h)) / (2.0*h*y);
g = sqrt(f*f + 1.0);
Precision signed_g = (f>=0)?g:-g;
f = ((x-z)*(x+z) + h*(y/(f + signed_g) - h)) / x;
// Next QR transformation
Precision c = 1.0;
Precision s = 1.0;
for(int i1 = l; i1<=k1; ++i1)
{ // 600
const int i=i1+1;
g = vOffDiagonal[i];
y = vDiagonal[i];
h = s*g;
g = c*g;
z = sqrt(f*f + h*h);
vOffDiagonal[i1] = z;
c = f/z;
s = h/z;
f = x*c + g*s;
g = -x*s + g*c;
h = y*s;
y *= c;
if(WANT_V)
for(int j=0; j<N; ++j)
{
Precision xx = mV[j][i1];
Precision zz = mV[j][i];
mV[j][i1] = xx*c + zz*s;
mV[j][i] = -xx*s + zz*c;
}
z = sqrt(f*f + h*h);
vDiagonal[i1] = z;
if(z!=0)
{
c = f/z;
s = h/z;
}
f = c*g + s*y;
x = -s*g + c*y;
if(WANT_U)
for(int j=0; j<M; ++j)
{
Precision yy = mU[j][i1];
Precision zz = mU[j][i];
mU[j][i1] = yy*c + zz*s;
mU[j][i] = -yy*s + zz*c;
}
} // 600
vOffDiagonal[l] = 0;
vOffDiagonal[k] = f;
vDiagonal[k] = x;
return false;
// EO IF NOT CONVERGED CHUNK
} // EO IF TESTS HOLD
} // 530
// Code should never get here!
throw(0);
//return false;
}
template<int M, int N, class Precision, bool WANT_U, bool WANT_V>
Precision GR_SVD<M,N,Precision,WANT_U,WANT_V>::get_largest_singular_value()
{
using std::max;
Precision d = vDiagonal[0];
for(int i=1; i<N; ++i) d = max(d, vDiagonal[i]);
return d;
}
template<int M, int N, class Precision, bool WANT_U, bool WANT_V>
Precision GR_SVD<M,N,Precision,WANT_U,WANT_V>::get_smallest_singular_value()
{
using std::min;
Precision d = vDiagonal[0];
for(int i=1; i<N; ++i) d = min(d, vDiagonal[i]);
return d;
}
template<int M, int N, class Precision, bool WANT_U, bool WANT_V>
int GR_SVD<M,N,Precision,WANT_U,WANT_V>::get_smallest_singular_value_index()
{
using std::min;
int nMin=0;
Precision d = vDiagonal[0];
for(int i=1; i<N; ++i)
if(vDiagonal[i] < d)
{
d = vDiagonal[i];
nMin = i;
}
return nMin;
}
template<int M, int N, class Precision, bool WANT_U, bool WANT_V>
void GR_SVD<M,N,Precision,WANT_U,WANT_V>::reorder()
{
std::vector<std::pair<Precision, unsigned int> > vSort;
vSort.reserve(N);
for(unsigned int i=0; i<N; ++i)
vSort.push_back(std::make_pair(-vDiagonal[i], i));
std::sort(vSort.begin(), vSort.end());
for(unsigned int i=0; i<N; ++i)
vDiagonal[i] = -vSort[i].first;
if(WANT_U)
{
Matrix<M, N, Precision> mU_copy = mU;
for(unsigned int i=0; i<N; ++i)
mU.T()[i] = mU_copy.T()[vSort[i].second];
}
if(WANT_V)
{
Matrix<N, N, Precision> mV_copy = mV;
for(unsigned int i=0; i<N; ++i)
mV.T()[i] = mV_copy.T()[vSort[i].second];
}
}
}
#endif