-
Notifications
You must be signed in to change notification settings - Fork 5
/
metrics.py
109 lines (84 loc) · 2.93 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import pandas as pd
import gecko
def filter_pairs(vols, volume=1e5):
return vols[vols["volume"] >= volume]
def get_risk(price, stoploss, profittaking):
slprice = price * (1 - stoploss)
ptprice = price * (1 + profittaking)
return slprice, ptprice
def get_trades(token, stoploss, profittaking):
price = gecko.price(token)
sl, pt = get_risk(price, stoploss, profittaking)
return price, sl, pt
def token_return_24h(token):
prices = gecko.market_chart(token, days=1)
open, close = prices["price"][0], prices["price"][-1]
if open == 0:
return 0
return (close - open) / open
def tokens_ret24h(tokens):
query = gecko.simple_price_1d(tokens)
ret24 = pd.DataFrame()
for k in query:
ret24.loc[k, "24H Return"] = query[k]["usd_24h_change"]
return ret24
def token_technical_indicator_macd(token):
df = gecko.market_chart(token, days=100)
exp_short = df["price"].ewm(span=12, adjust=False).mean()
exp_long = df["price"].ewm(span=26, adjust=False).mean()
macd = (exp_short - exp_long) / exp_long
return macd.iloc[-1]
def token_technical_indicator_rsi(token):
df = gecko.market_chart(token, days=100)
prdiff = df["price"].diff().dropna()
prdiffpos = prdiff[prdiff >= 0]
prdiffneg = prdiff[prdiff < 0]
if len(prdiffpos) > 0:
gain_ema = prdiffpos.ewm(span=12, adjust=False).mean().iloc[-1]
else:
gain_ema = 0
if len(prdiffneg) > 0:
loss_ema = prdiffneg.ewm(span=12, adjust=False).mean().iloc[-1]
else:
loss_ema = 1
rs = gain_ema / loss_ema
rsi = 100 - (100 / (1 + rs))
return rsi
def token_technical_indicator(token):
df = gecko.market_chart(token, days=100)
indicators = {}
exp_short = df["price"].ewm(span=12, adjust=False).mean()
exp_long = df["price"].ewm(span=26, adjust=False).mean()
macd = (exp_short - exp_long) / exp_long
indicators["macd_ratio"] = macd.iloc[-1]
prdiff = df["price"].diff().dropna()
prdiffpos = prdiff[prdiff >= 0]
prdiffneg = prdiff[prdiff < 0]
if len(prdiffpos) > 0:
gain_ema = prdiffpos.ewm(span=12, adjust=False).mean().iloc[-1]
else:
gain_ema = 0
if len(prdiffneg) > 0:
loss_ema = prdiffneg.ewm(span=12, adjust=False).mean().iloc[-1]
else:
loss_ema = 1
rs = gain_ema / loss_ema
rsi = 100 - (100 / (1 + rs))
indicators["rsi"] = rsi
return indicators
def find_rets_24h(vols):
main_tokens = {"binance-usd", "wbnb", "weth"}
tokens = set(main_tokens)
for pair in vols.index:
toks = set(pair.split("<>")) - main_tokens
if len(toks) == 1:
tokens.update(toks)
rets24h = tokens_ret24h(tokens)
rets24h.index.name = "Token name"
return rets24h
def add_7drets(df):
df["7D Return"] = None
for i in df.index:
ret7d = gecko.query_coin(i)["market_data"]["price_change_percentage_7d"]
df.loc[i, "7D Return"] = ret7d
return df