forked from divyachandana/yolact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_coco_eval.py
49 lines (34 loc) · 1.38 KB
/
run_coco_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
Runs the coco-supplied cocoeval script to evaluate detections
outputted by using the output_coco_json flag in eval.py.
"""
import argparse
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
parser = argparse.ArgumentParser(description='COCO Detections Evaluator')
parser.add_argument('--bbox_det_file', default='results/bbox_detections.json', type=str)
parser.add_argument('--mask_det_file', default='results/mask_detections.json', type=str)
parser.add_argument('--gt_ann_file', default='data/coco/annotations/instances_val2017.json', type=str)
parser.add_argument('--eval_type', default='both', choices=['bbox', 'mask', 'both'], type=str)
args = parser.parse_args()
if __name__ == '__main__':
eval_bbox = (args.eval_type in ('bbox', 'both'))
eval_mask = (args.eval_type in ('mask', 'both'))
print('Loading annotations...')
gt_annotations = COCO(args.gt_ann_file)
if eval_bbox:
bbox_dets = gt_annotations.loadRes(args.bbox_det_file)
if eval_mask:
mask_dets = gt_annotations.loadRes(args.mask_det_file)
if eval_bbox:
print('\nEvaluating BBoxes:')
bbox_eval = COCOeval(gt_annotations, bbox_dets, 'bbox')
bbox_eval.evaluate()
bbox_eval.accumulate()
bbox_eval.summarize()
if eval_mask:
print('\nEvaluating Masks:')
bbox_eval = COCOeval(gt_annotations, mask_dets, 'segm')
bbox_eval.evaluate()
bbox_eval.accumulate()
bbox_eval.summarize()