forked from divyachandana/yolact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
1107 lines (898 loc) · 45.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from data import COCODetection, get_label_map, MEANS, COLORS
from yolact import Yolact
from utils.augmentations import BaseTransform, FastBaseTransform, Resize
from utils.functions import MovingAverage, ProgressBar
from layers.box_utils import jaccard, center_size, mask_iou
from utils import timer
from utils.functions import SavePath
from layers.output_utils import postprocess, undo_image_transformation
import pycocotools
from data import cfg, set_cfg, set_dataset
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import argparse
import time
import random
import cProfile
import pickle
import json
import os
from collections import defaultdict
from pathlib import Path
from collections import OrderedDict
from PIL import Image
import matplotlib.pyplot as plt
import cv2
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def parse_args(argv=None):
parser = argparse.ArgumentParser(
description='YOLACT COCO Evaluation')
parser.add_argument('--trained_model',
default='weights/yolact_plus_resnet50_cig_butts_25_453_interrupt.pth', type=str,
help='Trained state_dict file path to open. If "interrupt", this will open the interrupt file.')
parser.add_argument('--top_k', default=5, type=int,
help='Further restrict the number of predictions to parse')
parser.add_argument('--cuda', default=True, type=str2bool,
help='Use cuda to evaulate model')
parser.add_argument('--fast_nms', default=True, type=str2bool,
help='Whether to use a faster, but not entirely correct version of NMS.')
parser.add_argument('--cross_class_nms', default=False, type=str2bool,
help='Whether compute NMS cross-class or per-class.')
parser.add_argument('--display_masks', default=True, type=str2bool,
help='Whether or not to display masks over bounding boxes')
parser.add_argument('--display_bboxes', default=True, type=str2bool,
help='Whether or not to display bboxes around masks')
parser.add_argument('--display_text', default=True, type=str2bool,
help='Whether or not to display text (class [score])')
parser.add_argument('--display_scores', default=True, type=str2bool,
help='Whether or not to display scores in addition to classes')
parser.add_argument('--display', dest='display', action='store_true',
help='Display qualitative results instead of quantitative ones.')
parser.add_argument('--shuffle', dest='shuffle', action='store_true',
help='Shuffles the images when displaying them. Doesn\'t have much of an effect when display is off though.')
parser.add_argument('--ap_data_file', default='results/ap_data.pkl', type=str,
help='In quantitative mode, the file to save detections before calculating mAP.')
parser.add_argument('--resume', dest='resume', action='store_true',
help='If display not set, this resumes mAP calculations from the ap_data_file.')
parser.add_argument('--max_images', default=-1, type=int,
help='The maximum number of images from the dataset to consider. Use -1 for all.')
parser.add_argument('--output_coco_json', dest='output_coco_json', action='store_true',
help='If display is not set, instead of processing IoU values, this just dumps detections into the coco json file.')
parser.add_argument('--bbox_det_file', default='results/bbox_detections.json', type=str,
help='The output file for coco bbox results if --coco_results is set.')
parser.add_argument('--mask_det_file', default='results/mask_detections.json', type=str,
help='The output file for coco mask results if --coco_results is set.')
parser.add_argument('--config', default=None,
help='The config object to use.')
parser.add_argument('--output_web_json', dest='output_web_json', action='store_true',
help='If display is not set, instead of processing IoU values, this dumps detections for usage with the detections viewer web thingy.')
parser.add_argument('--web_det_path', default='web/dets/', type=str,
help='If output_web_json is set, this is the path to dump detections into.')
parser.add_argument('--no_bar', dest='no_bar', action='store_true',
help='Do not output the status bar. This is useful for when piping to a file.')
parser.add_argument('--display_lincomb', default=False, type=str2bool,
help='If the config uses lincomb masks, output a visualization of how those masks are created.')
parser.add_argument('--benchmark', default=False, dest='benchmark', action='store_true',
help='Equivalent to running display mode but without displaying an image.')
parser.add_argument('--no_sort', default=False, dest='no_sort', action='store_true',
help='Do not sort images by hashed image ID.')
parser.add_argument('--seed', default=None, type=int,
help='The seed to pass into random.seed. Note: this is only really for the shuffle and does not (I think) affect cuda stuff.')
parser.add_argument('--mask_proto_debug', default=False, dest='mask_proto_debug', action='store_true',
help='Outputs stuff for scripts/compute_mask.py.')
parser.add_argument('--no_crop', default=False, dest='crop', action='store_false',
help='Do not crop output masks with the predicted bounding box.')
parser.add_argument('--image', default=None, type=str,
help='A path to an image to use for display.')
parser.add_argument('--images', default=None, type=str,
help='An input folder of images and output folder to save detected images. Should be in the format input->output.')
parser.add_argument('--video', default=None, type=str,
help='A path to a video to evaluate on. Passing in a number will use that index webcam.')
parser.add_argument('--video_multiframe', default=1, type=int,
help='The number of frames to evaluate in parallel to make videos play at higher fps.')
parser.add_argument('--score_threshold', default=0, type=float,
help='Detections with a score under this threshold will not be considered. This currently only works in display mode.')
parser.add_argument('--dataset', default=None, type=str,
help='If specified, override the dataset specified in the config with this one (example: coco2017_dataset).')
parser.add_argument('--detect', default=False, dest='detect', action='store_true',
help='Don\'t evauluate the mask branch at all and only do object detection. This only works for --display and --benchmark.')
parser.add_argument('--display_fps', default=False, dest='display_fps', action='store_true',
help='When displaying / saving video, draw the FPS on the frame')
parser.add_argument('--emulate_playback', default=False, dest='emulate_playback', action='store_true',
help='When saving a video, emulate the framerate that you\'d get running in real-time mode.')
parser.set_defaults(no_bar=False, display=False, resume=False, output_coco_json=False, output_web_json=False, shuffle=False,
benchmark=False, no_sort=False, no_hash=False, mask_proto_debug=False, crop=True, detect=False, display_fps=False,
emulate_playback=False)
global args
args = parser.parse_args(argv)
if args.output_web_json:
args.output_coco_json = True
if args.seed is not None:
random.seed(args.seed)
iou_thresholds = [x / 100 for x in range(50, 100, 5)]
coco_cats = {} # Call prep_coco_cats to fill this
coco_cats_inv = {}
color_cache = defaultdict(lambda: {})
def prep_display(dets_out, img, h, w, undo_transform=True, class_color=False, mask_alpha=0.45, fps_str=''):
"""
Note: If undo_transform=False then im_h and im_w are allowed to be None.
"""
if undo_transform:
img_numpy = undo_image_transformation(img, w, h)
img_gpu = torch.Tensor(img_numpy).cuda()
else:
img_gpu = img / 255.0
h, w, _ = img.shape
with timer.env('Postprocess'):
save = cfg.rescore_bbox
cfg.rescore_bbox = True
t = postprocess(dets_out, w, h, visualize_lincomb = args.display_lincomb,
crop_masks = args.crop,
score_threshold = args.score_threshold)
cfg.rescore_bbox = save
with timer.env('Copy'):
idx = t[1].argsort(0, descending=True)[:args.top_k]
if cfg.eval_mask_branch:
# Masks are drawn on the GPU, so don't copy
masks = t[3][idx]
classes, scores, boxes = [x[idx].cpu().numpy() for x in t[:3]]
num_dets_to_consider = min(args.top_k, classes.shape[0])
for j in range(num_dets_to_consider):
if scores[j] < args.score_threshold:
num_dets_to_consider = j
break
# Quick and dirty lambda for selecting the color for a particular index
# Also keeps track of a per-gpu color cache for maximum speed
def get_color(j, on_gpu=None):
global color_cache
color_idx = (classes[j] * 5 if class_color else j * 5) % len(COLORS)
if on_gpu is not None and color_idx in color_cache[on_gpu]:
return color_cache[on_gpu][color_idx]
else:
color = COLORS[color_idx]
if not undo_transform:
# The image might come in as RGB or BRG, depending
color = (color[2], color[1], color[0])
if on_gpu is not None:
color = torch.Tensor(color).to(on_gpu).float() / 255.
color_cache[on_gpu][color_idx] = color
return color
# First, draw the masks on the GPU where we can do it really fast
# Beware: very fast but possibly unintelligible mask-drawing code ahead
# I wish I had access to OpenGL or Vulkan but alas, I guess Pytorch tensor operations will have to suffice
if args.display_masks and cfg.eval_mask_branch and num_dets_to_consider > 0:
# After this, mask is of size [num_dets, h, w, 1]
masks = masks[:num_dets_to_consider, :, :, None]
# Prepare the RGB images for each mask given their color (size [num_dets, h, w, 1])
colors = torch.cat([get_color(j, on_gpu=img_gpu.device.index).view(1, 1, 1, 3) for j in range(num_dets_to_consider)], dim=0)
masks_color = masks.repeat(1, 1, 1, 3) * colors * mask_alpha
# This is 1 everywhere except for 1-mask_alpha where the mask is
inv_alph_masks = masks * (-mask_alpha) + 1
# I did the math for this on pen and paper. This whole block should be equivalent to:
# for j in range(num_dets_to_consider):
# img_gpu = img_gpu * inv_alph_masks[j] + masks_color[j]
masks_color_summand = masks_color[0]
if num_dets_to_consider > 1:
inv_alph_cumul = inv_alph_masks[:(num_dets_to_consider-1)].cumprod(dim=0)
masks_color_cumul = masks_color[1:] * inv_alph_cumul
masks_color_summand += masks_color_cumul.sum(dim=0)
img_gpu = img_gpu * inv_alph_masks.prod(dim=0) + masks_color_summand
if args.display_fps:
# Draw the box for the fps on the GPU
font_face = cv2.FONT_HERSHEY_DUPLEX
font_scale = 0.6
font_thickness = 1
text_w, text_h = cv2.getTextSize(fps_str, font_face, font_scale, font_thickness)[0]
img_gpu[0:text_h+8, 0:text_w+8] *= 0.6 # 1 - Box alpha
# Then draw the stuff that needs to be done on the cpu
# Note, make sure this is a uint8 tensor or opencv will not anti alias text for whatever reason
img_numpy = (img_gpu * 255).byte().cpu().numpy()
if args.display_fps:
# Draw the text on the CPU
text_pt = (4, text_h + 2)
text_color = [255, 255, 255]
cv2.putText(img_numpy, fps_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA)
if num_dets_to_consider == 0:
return img_numpy
if args.display_text or args.display_bboxes:
for j in reversed(range(num_dets_to_consider)):
x1, y1, x2, y2 = boxes[j, :]
color = get_color(j)
score = scores[j]
if args.display_bboxes:
cv2.rectangle(img_numpy, (x1, y1), (x2, y2), color, 1)
if args.display_text:
_class = cfg.dataset.class_names[classes[j]]
text_str = '%s: %.2f' % (_class, score) if args.display_scores else _class
font_face = cv2.FONT_HERSHEY_DUPLEX
font_scale = 0.6
font_thickness = 1
text_w, text_h = cv2.getTextSize(text_str, font_face, font_scale, font_thickness)[0]
text_pt = (x1, y1 - 3)
text_color = [255, 255, 255]
cv2.rectangle(img_numpy, (x1, y1), (x1 + text_w, y1 - text_h - 4), color, -1)
cv2.putText(img_numpy, text_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA)
return img_numpy
def prep_benchmark(dets_out, h, w):
with timer.env('Postprocess'):
t = postprocess(dets_out, w, h, crop_masks=args.crop, score_threshold=args.score_threshold)
with timer.env('Copy'):
classes, scores, boxes, masks = [x[:args.top_k] for x in t]
if isinstance(scores, list):
box_scores = scores[0].cpu().numpy()
mask_scores = scores[1].cpu().numpy()
else:
scores = scores.cpu().numpy()
classes = classes.cpu().numpy()
boxes = boxes.cpu().numpy()
masks = masks.cpu().numpy()
with timer.env('Sync'):
# Just in case
torch.cuda.synchronize()
def prep_coco_cats():
""" Prepare inverted table for category id lookup given a coco cats object. """
for coco_cat_id, transformed_cat_id_p1 in get_label_map().items():
transformed_cat_id = transformed_cat_id_p1 - 1
coco_cats[transformed_cat_id] = coco_cat_id
coco_cats_inv[coco_cat_id] = transformed_cat_id
def get_coco_cat(transformed_cat_id):
""" transformed_cat_id is [0,80) as indices in cfg.dataset.class_names """
return coco_cats[transformed_cat_id]
def get_transformed_cat(coco_cat_id):
""" transformed_cat_id is [0,80) as indices in cfg.dataset.class_names """
return coco_cats_inv[coco_cat_id]
class Detections:
def __init__(self):
self.bbox_data = []
self.mask_data = []
def add_bbox(self, image_id:int, category_id:int, bbox:list, score:float):
""" Note that bbox should be a list or tuple of (x1, y1, x2, y2) """
bbox = [bbox[0], bbox[1], bbox[2]-bbox[0], bbox[3]-bbox[1]]
# Round to the nearest 10th to avoid huge file sizes, as COCO suggests
bbox = [round(float(x)*10)/10 for x in bbox]
self.bbox_data.append({
'image_id': int(image_id),
'category_id': get_coco_cat(int(category_id)),
'bbox': bbox,
'score': float(score)
})
def add_mask(self, image_id:int, category_id:int, segmentation:np.ndarray, score:float):
""" The segmentation should be the full mask, the size of the image and with size [h, w]. """
rle = pycocotools.mask.encode(np.asfortranarray(segmentation.astype(np.uint8)))
rle['counts'] = rle['counts'].decode('ascii') # json.dump doesn't like bytes strings
self.mask_data.append({
'image_id': int(image_id),
'category_id': get_coco_cat(int(category_id)),
'segmentation': rle,
'score': float(score)
})
def dump(self):
dump_arguments = [
(self.bbox_data, args.bbox_det_file),
(self.mask_data, args.mask_det_file)
]
for data, path in dump_arguments:
with open(path, 'w') as f:
json.dump(data, f)
def dump_web(self):
""" Dumps it in the format for my web app. Warning: bad code ahead! """
config_outs = ['preserve_aspect_ratio', 'use_prediction_module',
'use_yolo_regressors', 'use_prediction_matching',
'train_masks']
output = {
'info' : {
'Config': {key: getattr(cfg, key) for key in config_outs},
}
}
image_ids = list(set([x['image_id'] for x in self.bbox_data]))
image_ids.sort()
image_lookup = {_id: idx for idx, _id in enumerate(image_ids)}
output['images'] = [{'image_id': image_id, 'dets': []} for image_id in image_ids]
# These should already be sorted by score with the way prep_metrics works.
for bbox, mask in zip(self.bbox_data, self.mask_data):
image_obj = output['images'][image_lookup[bbox['image_id']]]
image_obj['dets'].append({
'score': bbox['score'],
'bbox': bbox['bbox'],
'category': cfg.dataset.class_names[get_transformed_cat(bbox['category_id'])],
'mask': mask['segmentation'],
})
with open(os.path.join(args.web_det_path, '%s.json' % cfg.name), 'w') as f:
json.dump(output, f)
def _mask_iou(mask1, mask2, iscrowd=False):
with timer.env('Mask IoU'):
ret = mask_iou(mask1, mask2, iscrowd)
return ret.cpu()
def _bbox_iou(bbox1, bbox2, iscrowd=False):
with timer.env('BBox IoU'):
ret = jaccard(bbox1, bbox2, iscrowd)
return ret.cpu()
def prep_metrics(ap_data, dets, img, gt, gt_masks, h, w, num_crowd, image_id, detections:Detections=None):
""" Returns a list of APs for this image, with each element being for a class """
if not args.output_coco_json:
with timer.env('Prepare gt'):
gt_boxes = torch.Tensor(gt[:, :4])
gt_boxes[:, [0, 2]] *= w
gt_boxes[:, [1, 3]] *= h
gt_classes = list(gt[:, 4].astype(int))
gt_masks = torch.Tensor(gt_masks).view(-1, h*w)
if num_crowd > 0:
split = lambda x: (x[-num_crowd:], x[:-num_crowd])
crowd_boxes , gt_boxes = split(gt_boxes)
crowd_masks , gt_masks = split(gt_masks)
crowd_classes, gt_classes = split(gt_classes)
with timer.env('Postprocess'):
classes, scores, boxes, masks = postprocess(dets, w, h, crop_masks=args.crop, score_threshold=args.score_threshold)
if classes.size(0) == 0:
return
classes = list(classes.cpu().numpy().astype(int))
if isinstance(scores, list):
box_scores = list(scores[0].cpu().numpy().astype(float))
mask_scores = list(scores[1].cpu().numpy().astype(float))
else:
scores = list(scores.cpu().numpy().astype(float))
box_scores = scores
mask_scores = scores
masks = masks.view(-1, h*w).cuda()
boxes = boxes.cuda()
if args.output_coco_json:
with timer.env('JSON Output'):
boxes = boxes.cpu().numpy()
masks = masks.view(-1, h, w).cpu().numpy()
for i in range(masks.shape[0]):
# Make sure that the bounding box actually makes sense and a mask was produced
if (boxes[i, 3] - boxes[i, 1]) * (boxes[i, 2] - boxes[i, 0]) > 0:
detections.add_bbox(image_id, classes[i], boxes[i,:], box_scores[i])
detections.add_mask(image_id, classes[i], masks[i,:,:], mask_scores[i])
return
with timer.env('Eval Setup'):
num_pred = len(classes)
num_gt = len(gt_classes)
mask_iou_cache = _mask_iou(masks, gt_masks)
bbox_iou_cache = _bbox_iou(boxes.float(), gt_boxes.float())
if num_crowd > 0:
crowd_mask_iou_cache = _mask_iou(masks, crowd_masks, iscrowd=True)
crowd_bbox_iou_cache = _bbox_iou(boxes.float(), crowd_boxes.float(), iscrowd=True)
else:
crowd_mask_iou_cache = None
crowd_bbox_iou_cache = None
box_indices = sorted(range(num_pred), key=lambda i: -box_scores[i])
mask_indices = sorted(box_indices, key=lambda i: -mask_scores[i])
iou_types = [
('box', lambda i,j: bbox_iou_cache[i, j].item(),
lambda i,j: crowd_bbox_iou_cache[i,j].item(),
lambda i: box_scores[i], box_indices),
('mask', lambda i,j: mask_iou_cache[i, j].item(),
lambda i,j: crowd_mask_iou_cache[i,j].item(),
lambda i: mask_scores[i], mask_indices)
]
timer.start('Main loop')
for _class in set(classes + gt_classes):
ap_per_iou = []
num_gt_for_class = sum([1 for x in gt_classes if x == _class])
for iouIdx in range(len(iou_thresholds)):
iou_threshold = iou_thresholds[iouIdx]
for iou_type, iou_func, crowd_func, score_func, indices in iou_types:
gt_used = [False] * len(gt_classes)
ap_obj = ap_data[iou_type][iouIdx][_class]
ap_obj.add_gt_positives(num_gt_for_class)
for i in indices:
if classes[i] != _class:
continue
max_iou_found = iou_threshold
max_match_idx = -1
for j in range(num_gt):
if gt_used[j] or gt_classes[j] != _class:
continue
iou = iou_func(i, j)
if iou > max_iou_found:
max_iou_found = iou
max_match_idx = j
if max_match_idx >= 0:
gt_used[max_match_idx] = True
ap_obj.push(score_func(i), True)
else:
# If the detection matches a crowd, we can just ignore it
matched_crowd = False
if num_crowd > 0:
for j in range(len(crowd_classes)):
if crowd_classes[j] != _class:
continue
iou = crowd_func(i, j)
if iou > iou_threshold:
matched_crowd = True
break
# All this crowd code so that we can make sure that our eval code gives the
# same result as COCOEval. There aren't even that many crowd annotations to
# begin with, but accuracy is of the utmost importance.
if not matched_crowd:
ap_obj.push(score_func(i), False)
timer.stop('Main loop')
class APDataObject:
"""
Stores all the information necessary to calculate the AP for one IoU and one class.
Note: I type annotated this because why not.
"""
def __init__(self):
self.data_points = []
self.num_gt_positives = 0
def push(self, score:float, is_true:bool):
self.data_points.append((score, is_true))
def add_gt_positives(self, num_positives:int):
""" Call this once per image. """
self.num_gt_positives += num_positives
def is_empty(self) -> bool:
return len(self.data_points) == 0 and self.num_gt_positives == 0
def get_ap(self) -> float:
""" Warning: result not cached. """
if self.num_gt_positives == 0:
return 0
# Sort descending by score
self.data_points.sort(key=lambda x: -x[0])
precisions = []
recalls = []
num_true = 0
num_false = 0
# Compute the precision-recall curve. The x axis is recalls and the y axis precisions.
for datum in self.data_points:
# datum[1] is whether the detection a true or false positive
if datum[1]: num_true += 1
else: num_false += 1
precision = num_true / (num_true + num_false)
recall = num_true / self.num_gt_positives
precisions.append(precision)
recalls.append(recall)
# Smooth the curve by computing [max(precisions[i:]) for i in range(len(precisions))]
# Basically, remove any temporary dips from the curve.
# At least that's what I think, idk. COCOEval did it so I do too.
for i in range(len(precisions)-1, 0, -1):
if precisions[i] > precisions[i-1]:
precisions[i-1] = precisions[i]
# Compute the integral of precision(recall) d_recall from recall=0->1 using fixed-length riemann summation with 101 bars.
y_range = [0] * 101 # idx 0 is recall == 0.0 and idx 100 is recall == 1.00
x_range = np.array([x / 100 for x in range(101)])
recalls = np.array(recalls)
# I realize this is weird, but all it does is find the nearest precision(x) for a given x in x_range.
# Basically, if the closest recall we have to 0.01 is 0.009 this sets precision(0.01) = precision(0.009).
# I approximate the integral this way, because that's how COCOEval does it.
indices = np.searchsorted(recalls, x_range, side='left')
for bar_idx, precision_idx in enumerate(indices):
if precision_idx < len(precisions):
y_range[bar_idx] = precisions[precision_idx]
# Finally compute the riemann sum to get our integral.
# avg([precision(x) for x in 0:0.01:1])
return sum(y_range) / len(y_range)
def badhash(x):
"""
Just a quick and dirty hash function for doing a deterministic shuffle based on image_id.
Source:
https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key
"""
x = (((x >> 16) ^ x) * 0x045d9f3b) & 0xFFFFFFFF
x = (((x >> 16) ^ x) * 0x045d9f3b) & 0xFFFFFFFF
x = ((x >> 16) ^ x) & 0xFFFFFFFF
return x
def evalimage(net:Yolact, path:str, save_path:str=None):
frame = torch.from_numpy(cv2.imread(path)).cuda().float()
batch = FastBaseTransform()(frame.unsqueeze(0))
preds = net(batch)
img_numpy = prep_display(preds, frame, None, None, undo_transform=False)
if save_path is None:
img_numpy = img_numpy[:, :, (2, 1, 0)]
if save_path is None:
plt.imshow(img_numpy)
plt.title(path)
plt.show()
else:
cv2.imwrite(save_path, img_numpy)
def evalimages(net:Yolact, input_folder:str, output_folder:str):
if not os.path.exists(output_folder):
os.mkdir(output_folder)
print()
for p in Path(input_folder).glob('*'):
path = str(p)
name = os.path.basename(path)
name = '.'.join(name.split('.')[:-1]) + '.png'
out_path = os.path.join(output_folder, name)
evalimage(net, path, out_path)
print(path + ' -> ' + out_path)
print('Done.')
from multiprocessing.pool import ThreadPool
from queue import Queue
class CustomDataParallel(torch.nn.DataParallel):
""" A Custom Data Parallel class that properly gathers lists of dictionaries. """
def gather(self, outputs, output_device):
# Note that I don't actually want to convert everything to the output_device
return sum(outputs, [])
def evalvideo(net:Yolact, path:str, out_path:str=None):
# If the path is a digit, parse it as a webcam index
is_webcam = path.isdigit()
# If the input image size is constant, this make things faster (hence why we can use it in a video setting).
cudnn.benchmark = True
if is_webcam:
vid = cv2.VideoCapture(int(path))
else:
vid = cv2.VideoCapture(path)
if not vid.isOpened():
print('Could not open video "%s"' % path)
exit(-1)
target_fps = round(vid.get(cv2.CAP_PROP_FPS))
frame_width = round(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = round(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
if is_webcam:
num_frames = float('inf')
else:
num_frames = round(vid.get(cv2.CAP_PROP_FRAME_COUNT))
net = CustomDataParallel(net).cuda()
transform = torch.nn.DataParallel(FastBaseTransform()).cuda()
frame_times = MovingAverage(100)
fps = 0
frame_time_target = 1 / target_fps
running = True
fps_str = ''
vid_done = False
frames_displayed = 0
if out_path is not None:
out = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*"mp4v"), target_fps, (frame_width, frame_height))
def cleanup_and_exit():
print()
pool.terminate()
vid.release()
if out_path is not None:
out.release()
cv2.destroyAllWindows()
exit()
def get_next_frame(vid):
frames = []
for idx in range(args.video_multiframe):
frame = vid.read()[1]
if frame is None:
return frames
frames.append(frame)
return frames
def transform_frame(frames):
with torch.no_grad():
frames = [torch.from_numpy(frame).cuda().float() for frame in frames]
return frames, transform(torch.stack(frames, 0))
def eval_network(inp):
with torch.no_grad():
frames, imgs = inp
num_extra = 0
while imgs.size(0) < args.video_multiframe:
imgs = torch.cat([imgs, imgs[0].unsqueeze(0)], dim=0)
num_extra += 1
out = net(imgs)
if num_extra > 0:
out = out[:-num_extra]
return frames, out
def prep_frame(inp, fps_str):
with torch.no_grad():
frame, preds = inp
return prep_display(preds, frame, None, None, undo_transform=False, class_color=True, fps_str=fps_str)
frame_buffer = Queue()
video_fps = 0
# All this timing code to make sure that
def play_video():
try:
nonlocal frame_buffer, running, video_fps, is_webcam, num_frames, frames_displayed, vid_done
video_frame_times = MovingAverage(100)
frame_time_stabilizer = frame_time_target
last_time = None
stabilizer_step = 0.0005
progress_bar = ProgressBar(30, num_frames)
while running:
frame_time_start = time.time()
if not frame_buffer.empty():
next_time = time.time()
if last_time is not None:
video_frame_times.add(next_time - last_time)
video_fps = 1 / video_frame_times.get_avg()
if out_path is None:
cv2.imshow(path, frame_buffer.get())
else:
out.write(frame_buffer.get())
frames_displayed += 1
last_time = next_time
if out_path is not None:
if video_frame_times.get_avg() == 0:
fps = 0
else:
fps = 1 / video_frame_times.get_avg()
progress = frames_displayed / num_frames * 100
progress_bar.set_val(frames_displayed)
print('\rProcessing Frames %s %6d / %6d (%5.2f%%) %5.2f fps '
% (repr(progress_bar), frames_displayed, num_frames, progress, fps), end='')
# This is split because you don't want savevideo to require cv2 display functionality (see #197)
if out_path is None and cv2.waitKey(1) == 27:
# Press Escape to close
running = False
if not (frames_displayed < num_frames):
running = False
if not vid_done:
buffer_size = frame_buffer.qsize()
if buffer_size < args.video_multiframe:
frame_time_stabilizer += stabilizer_step
elif buffer_size > args.video_multiframe:
frame_time_stabilizer -= stabilizer_step
if frame_time_stabilizer < 0:
frame_time_stabilizer = 0
new_target = frame_time_stabilizer if is_webcam else max(frame_time_stabilizer, frame_time_target)
else:
new_target = frame_time_target
next_frame_target = max(2 * new_target - video_frame_times.get_avg(), 0)
target_time = frame_time_start + next_frame_target - 0.001 # Let's just subtract a millisecond to be safe
if out_path is None or args.emulate_playback:
# This gives more accurate timing than if sleeping the whole amount at once
while time.time() < target_time:
time.sleep(0.001)
else:
# Let's not starve the main thread, now
time.sleep(0.001)
except:
# See issue #197 for why this is necessary
import traceback
traceback.print_exc()
extract_frame = lambda x, i: (x[0][i] if x[1][i]['detection'] is None else x[0][i].to(x[1][i]['detection']['box'].device), [x[1][i]])
# Prime the network on the first frame because I do some thread unsafe things otherwise
print('Initializing model... ', end='')
first_batch = eval_network(transform_frame(get_next_frame(vid)))
print('Done.')
# For each frame the sequence of functions it needs to go through to be processed (in reversed order)
sequence = [prep_frame, eval_network, transform_frame]
pool = ThreadPool(processes=len(sequence) + args.video_multiframe + 2)
pool.apply_async(play_video)
active_frames = [{'value': extract_frame(first_batch, i), 'idx': 0} for i in range(len(first_batch[0]))]
print()
if out_path is None: print('Press Escape to close.')
try:
while vid.isOpened() and running:
# Hard limit on frames in buffer so we don't run out of memory >.>
while frame_buffer.qsize() > 100:
time.sleep(0.001)
start_time = time.time()
# Start loading the next frames from the disk
if not vid_done:
next_frames = pool.apply_async(get_next_frame, args=(vid,))
else:
next_frames = None
if not (vid_done and len(active_frames) == 0):
# For each frame in our active processing queue, dispatch a job
# for that frame using the current function in the sequence
for frame in active_frames:
_args = [frame['value']]
if frame['idx'] == 0:
_args.append(fps_str)
frame['value'] = pool.apply_async(sequence[frame['idx']], args=_args)
# For each frame whose job was the last in the sequence (i.e. for all final outputs)
for frame in active_frames:
if frame['idx'] == 0:
frame_buffer.put(frame['value'].get())
# Remove the finished frames from the processing queue
active_frames = [x for x in active_frames if x['idx'] > 0]
# Finish evaluating every frame in the processing queue and advanced their position in the sequence
for frame in list(reversed(active_frames)):
frame['value'] = frame['value'].get()
frame['idx'] -= 1
if frame['idx'] == 0:
# Split this up into individual threads for prep_frame since it doesn't support batch size
active_frames += [{'value': extract_frame(frame['value'], i), 'idx': 0} for i in range(1, len(frame['value'][0]))]
frame['value'] = extract_frame(frame['value'], 0)
# Finish loading in the next frames and add them to the processing queue
if next_frames is not None:
frames = next_frames.get()
if len(frames) == 0:
vid_done = True
else:
active_frames.append({'value': frames, 'idx': len(sequence)-1})
# Compute FPS
frame_times.add(time.time() - start_time)
fps = args.video_multiframe / frame_times.get_avg()
else:
fps = 0
fps_str = 'Processing FPS: %.2f | Video Playback FPS: %.2f | Frames in Buffer: %d' % (fps, video_fps, frame_buffer.qsize())
if not args.display_fps:
print('\r' + fps_str + ' ', end='')
except KeyboardInterrupt:
print('\nStopping...')
cleanup_and_exit()
def evaluate(net:Yolact, dataset, train_mode=False):
net.detect.use_fast_nms = args.fast_nms
net.detect.use_cross_class_nms = args.cross_class_nms
cfg.mask_proto_debug = args.mask_proto_debug
# TODO Currently we do not support Fast Mask Re-scroing in evalimage, evalimages, and evalvideo
if args.image is not None:
if ':' in args.image:
inp, out = args.image.split(':')
evalimage(net, inp, out)
else:
evalimage(net, args.image)
return
elif args.images is not None:
inp, out = args.images.split(':')
evalimages(net, inp, out)
return
elif args.video is not None:
if ':' in args.video:
inp, out = args.video.split(':')
evalvideo(net, inp, out)
else:
evalvideo(net, args.video)
return
frame_times = MovingAverage()
dataset_size = len(dataset) if args.max_images < 0 else min(args.max_images, len(dataset))
progress_bar = ProgressBar(30, dataset_size)
print()
if not args.display and not args.benchmark:
# For each class and iou, stores tuples (score, isPositive)
# Index ap_data[type][iouIdx][classIdx]
ap_data = {
'box' : [[APDataObject() for _ in cfg.dataset.class_names] for _ in iou_thresholds],
'mask': [[APDataObject() for _ in cfg.dataset.class_names] for _ in iou_thresholds]
}
detections = Detections()
else:
timer.disable('Load Data')
dataset_indices = list(range(len(dataset)))
if args.shuffle:
random.shuffle(dataset_indices)
elif not args.no_sort:
# Do a deterministic shuffle based on the image ids
#
# I do this because on python 3.5 dictionary key order is *random*, while in 3.6 it's
# the order of insertion. That means on python 3.6, the images come in the order they are in
# in the annotations file. For some reason, the first images in the annotations file are
# the hardest. To combat this, I use a hard-coded hash function based on the image ids
# to shuffle the indices we use. That way, no matter what python version or how pycocotools
# handles the data, we get the same result every time.
hashed = [badhash(x) for x in dataset.ids]
dataset_indices.sort(key=lambda x: hashed[x])
dataset_indices = dataset_indices[:dataset_size]
try:
# Main eval loop
for it, image_idx in enumerate(dataset_indices):
timer.reset()
with timer.env('Load Data'):
img, gt, gt_masks, h, w, num_crowd = dataset.pull_item(image_idx)
# Test flag, do not upvote
if cfg.mask_proto_debug:
with open('scripts/info.txt', 'w') as f:
f.write(str(dataset.ids[image_idx]))
np.save('scripts/gt.npy', gt_masks)
batch = Variable(img.unsqueeze(0))
if args.cuda:
batch = batch.cuda()
with timer.env('Network Extra'):
preds = net(batch)
# Perform the meat of the operation here depending on our mode.
if args.display:
img_numpy = prep_display(preds, img, h, w)
elif args.benchmark:
prep_benchmark(preds, h, w)
else:
prep_metrics(ap_data, preds, img, gt, gt_masks, h, w, num_crowd, dataset.ids[image_idx], detections)
# First couple of images take longer because we're constructing the graph.
# Since that's technically initialization, don't include those in the FPS calculations.
if it > 1:
frame_times.add(timer.total_time())
if args.display:
if it > 1:
print('Avg FPS: %.4f' % (1 / frame_times.get_avg()))
plt.imshow(img_numpy)
plt.title(str(dataset.ids[image_idx]))
plt.show()
elif not args.no_bar:
if it > 1: fps = 1 / frame_times.get_avg()
else: fps = 0
progress = (it+1) / dataset_size * 100
progress_bar.set_val(it+1)
print('\rProcessing Images %s %6d / %6d (%5.2f%%) %5.2f fps '
% (repr(progress_bar), it+1, dataset_size, progress, fps), end='')
if not args.display and not args.benchmark:
print()
if args.output_coco_json:
print('Dumping detections...')
if args.output_web_json:
detections.dump_web()
else:
detections.dump()
else:
if not train_mode:
print('Saving data...')
with open(args.ap_data_file, 'wb') as f:
pickle.dump(ap_data, f)
return calc_map(ap_data)
elif args.benchmark:
print()
print()
print('Stats for the last frame:')
timer.print_stats()
avg_seconds = frame_times.get_avg()
print('Average: %5.2f fps, %5.2f ms' % (1 / frame_times.get_avg(), 1000*avg_seconds))