Skip to content

为 AIGC 收集 RAG 的精彩论文。 我们在论文“AI 生成内容的检索增强生成:一项调查”中提出了 RAG 基础、增强功能和应用的分类法。

Notifications You must be signed in to change notification settings

Upcreat/RAG-Survey

 
 

Repository files navigation

Retrieval-Augmented Generation for AI-Generated Content: A Survey

This repo is constructed for collecting and categorizing papers about RAG according to our survey paper: Retrieval-Augmented Generation for AI-Generated Content: A Survey. Considering the rapid growth of this field, we will continue to update both paper and this repo.

Overview

image

Catalogue

Methods Taxonomy

RAG Foundations

image

RAG Enhancements

image

Applications Taxonomy

image
image

RAG for Text

RAG for Code

RAG for Audio

RAG for Image

RAG for Video

RAG for 3D

RAG for Knowledge

RAG for Science

Benchmark

Benchmarking Large Language Models in Retrieval-Augmented Generation

CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models

ARES: An Automated Evaluation Framework for Retrieval-AugmentedGeneration Systems

RAGAS: Automated Evaluation of Retrieval Augmented Generation

KILT: a Benchmark for Knowledge Intensive Language Tasks

Citation

if you find this work useful, please cite our paper:

@article{zhao2024retrieval,
  title={Retrieval-Augmented Generation for AI-Generated Content: A Survey},
  author={Zhao, Penghao and Zhang, Hailin and Yu, Qinhan and Wang, Zhengren and Geng, Yunteng and Fu, Fangcheng and Yang, Ling and Zhang, Wentao and Cui, Bin},
  journal={arXiv preprint arXiv:2402.19473},
  year={2024}
}

About

为 AIGC 收集 RAG 的精彩论文。 我们在论文“AI 生成内容的检索增强生成:一项调查”中提出了 RAG 基础、增强功能和应用的分类法。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published