[x, y] = ERFA.xy06(date1, date2)
X,Y coordinates of celestial intermediate pole from series based on IAU 2006 precession and IAU 2000A nutation.
date1,date2 double TT as a 2-part Julian Date (Note 1)
x,y double CIP X,Y coordinates (Note 2)
- The TT date date1+date2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD(TT)=2450123.7 could be expressed in any of these ways, among others:
date1 date2
2450123.7 0.0 (JD method)
2451545.0 -1421.3 (J2000 method)
2400000.5 50123.2 (MJD method)
2450123.5 0.2 (date & time method)
The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience.
-
The X,Y coordinates are those of the unit vector towards the celestial intermediate pole. They represent the combined effects of frame bias, precession and nutation.
-
The fundamental arguments used are as adopted in IERS Conventions (2003) and are from Simon et al. (1994) and Souchay et al. (1999).
-
This is an alternative to the angles-based method, via the ERFA function eraFw2xy and as used in eraXys06a for example. The two methods agree at the 1 microarcsecond level (at present), a negligible amount compared with the intrinsic accuracy of the models. However, it would be unwise to mix the two methods (angles-based and series-based) in a single application.
eraFal03 mean anomaly of the Moon
eraFalp03 mean anomaly of the Sun
eraFaf03 mean argument of the latitude of the Moon
eraFad03 mean elongation of the Moon from the Sun
eraFaom03 mean longitude of the Moon's ascending node
eraFame03 mean longitude of Mercury
eraFave03 mean longitude of Venus
eraFae03 mean longitude of Earth
eraFama03 mean longitude of Mars
eraFaju03 mean longitude of Jupiter
eraFasa03 mean longitude of Saturn
eraFaur03 mean longitude of Uranus
eraFane03 mean longitude of Neptune
eraFapa03 general accumulated precession in longitude
Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astron.Astrophys., 412, 567
Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855
McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note No. 32, BKG
Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. & Laskar, J., Astron.Astrophys., 1994, 282, 663
Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M., 1999, Astron.Astrophys.Supp.Ser. 135, 111
Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981
This revision: 2021 May 11
Copyright (C) 2013-2021, NumFOCUS Foundation. Derived, with permission, from the SOFA library.