forked from ChainSafe/go-schnorrkel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vrf.go
310 lines (260 loc) · 7.74 KB
/
vrf.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
package schnorrkel
import (
"errors"
"github.com/gtank/merlin"
r255 "github.com/gtank/ristretto255"
)
// MAX_VRF_BYTES is the maximum bytes that can be extracted from the VRF via MakeBytes
const MAX_VRF_BYTES = 64
var kusamaVRF bool = true
type VrfInOut struct {
input *r255.Element
output *r255.Element
}
type VrfOutput struct {
output *r255.Element
}
type VrfProof struct {
c *r255.Scalar
s *r255.Scalar
}
// SetKusama sets the VRF kusama option. Defaults to true.
func SetKusamaVRF(k bool) {
kusamaVRF = k
}
// Output returns a VrfOutput from a VrfInOut
func (io *VrfInOut) Output() *VrfOutput {
return &VrfOutput{
output: io.output,
}
}
// EncodeOutput returns the 64-byte encoding of the input and output concatenated
func (io *VrfInOut) Encode() []byte {
outbytes := [32]byte{}
copy(outbytes[:], io.output.Encode([]byte{}))
inbytes := [32]byte{}
copy(inbytes[:], io.input.Encode([]byte{}))
return append(inbytes[:], outbytes[:]...)
}
// MakeBytes returns raw bytes output from the VRF
// It returns a byte slice of the given size
// https://github.com/w3f/schnorrkel/blob/master/src/vrf.rs#L343
func (io *VrfInOut) MakeBytes(size int, context []byte) ([]byte, error) {
if size <= 0 || size > MAX_VRF_BYTES {
return nil, errors.New("invalid size parameter")
}
t := merlin.NewTranscript("VRFResult")
t.AppendMessage([]byte(""), context)
io.commit(t)
return t.ExtractBytes([]byte(""), size), nil
}
func (io *VrfInOut) commit(t *merlin.Transcript) {
t.AppendMessage([]byte("vrf-in"), io.input.Encode([]byte{}))
t.AppendMessage([]byte("vrf-out"), io.output.Encode([]byte{}))
}
// NewOutput creates a new VRF output from a 64-byte element
func NewOutput(in [32]byte) (*VrfOutput, error) {
output := r255.NewElement()
err := output.Decode(in[:])
if err != nil {
return nil, err
}
return &VrfOutput{
output: output,
}, nil
}
// AttachInput returns a VrfInOut pair from an output
// https://github.com/w3f/schnorrkel/blob/master/src/vrf.rs#L249
func (out *VrfOutput) AttachInput(pub *PublicKey, t *merlin.Transcript) (*VrfInOut, error) {
if pub == nil {
return nil, errors.New("public key provided is nil")
}
if t == nil {
return nil, errors.New("transcript provided is nil")
}
input := pub.vrfHash(t)
return &VrfInOut{
input: input,
output: out.output,
}, nil
}
// Encode returns the 32-byte encoding of the output
func (out *VrfOutput) Encode() [32]byte {
outbytes := [32]byte{}
copy(outbytes[:], out.output.Encode([]byte{}))
return outbytes
}
// Decode sets the VrfOutput to the decoded input
func (out *VrfOutput) Decode(in [32]byte) error {
output := r255.NewElement()
err := output.Decode(in[:])
if err != nil {
return err
}
out.output = output
return nil
}
// Encode returns a 64-byte encoded VrfProof
func (p *VrfProof) Encode() [64]byte {
cbytes := [32]byte{}
copy(cbytes[:], p.c.Encode([]byte{}))
sbytes := [32]byte{}
copy(sbytes[:], p.s.Encode([]byte{}))
enc := [64]byte{}
copy(enc[:32], cbytes[:])
copy(enc[32:], sbytes[:])
return enc
}
// Decode sets the VrfProof to the decoded input
func (p *VrfProof) Decode(in [64]byte) error {
c := r255.NewScalar()
err := c.Decode(in[:32])
if err != nil {
return err
}
p.c = c
s := r255.NewScalar()
err = s.Decode(in[32:])
if err != nil {
return err
}
p.s = s
return nil
}
// VrfSign returns a vrf output and proof given a secret key and transcript.
func (sk *SecretKey) VrfSign(t *merlin.Transcript) (*VrfInOut, *VrfProof, error) {
if t == nil {
return nil, nil, errors.New("transcript provided is nil")
}
p, err := sk.vrfCreateHash(t)
if err != nil {
return nil, nil, err
}
extra := merlin.NewTranscript("VRF")
proof, err := sk.dleqProve(extra, p)
if err != nil {
return nil, nil, err
}
return p, proof, nil
}
// dleqProve creates a VRF proof for the transcript and input with this secret key.
// see: https://github.com/w3f/schnorrkel/blob/798ab3e0813aa478b520c5cf6dc6e02fd4e07f0a/src/vrf.rs#L604
func (sk *SecretKey) dleqProve(t *merlin.Transcript, p *VrfInOut) (*VrfProof, error) {
pub, err := sk.Public()
if err != nil {
return nil, err
}
pubenc := pub.Encode()
t.AppendMessage([]byte("proto-name"), []byte("DLEQProof"))
t.AppendMessage([]byte("vrf:h"), p.input.Encode([]byte{}))
if !kusamaVRF {
t.AppendMessage([]byte("vrf:pk"), pubenc[:])
}
// create random element R = g^r
// TODO: update toe use witness scalar
// https://github.com/w3f/schnorrkel/blob/master/src/vrf.rs#L620
r, err := NewRandomScalar()
if err != nil {
return nil, err
}
R := r255.NewElement()
R.ScalarBaseMult(r)
t.AppendMessage([]byte("vrf:R=g^r"), R.Encode([]byte{}))
// create hr := HashToElement(input)
hr := r255.NewElement().ScalarMult(r, p.input).Encode([]byte{})
t.AppendMessage([]byte("vrf:h^r"), hr)
if kusamaVRF {
t.AppendMessage([]byte("vrf:pk"), pubenc[:])
}
t.AppendMessage([]byte("vrf:h^sk"), p.output.Encode([]byte{}))
c := challengeScalar(t, []byte("prove"))
s := r255.NewScalar()
sc, err := ScalarFromBytes(sk.key)
if err != nil {
return nil, err
}
s.Subtract(r, r255.NewScalar().Multiply(c, sc))
return &VrfProof{
c: c,
s: s,
}, nil
}
// vrfCreateHash creates a VRF input/output pair on the given transcript.
func (sk *SecretKey) vrfCreateHash(t *merlin.Transcript) (*VrfInOut, error) {
pub, err := sk.Public()
if err != nil {
return nil, err
}
input := pub.vrfHash(t)
output := r255.NewElement()
sc := r255.NewScalar()
err = sc.Decode(sk.key[:])
if err != nil {
return nil, err
}
output.ScalarMult(sc, input)
return &VrfInOut{
input: input,
output: output,
}, nil
}
// VrfVerify verifies that the proof and output created are valid given the public key and transcript.
func (pk *PublicKey) VrfVerify(t *merlin.Transcript, out *VrfOutput, proof *VrfProof) (bool, error) {
if t == nil {
return false, errors.New("transcript provided is nil")
}
if out == nil {
return false, errors.New("output provided is nil")
}
if proof == nil {
return false, errors.New("proof provided is nil")
}
if pk.key.Equal(publicKeyAtInfinity) == 1 {
return false, errPublicKeyAtInfinity
}
inout, err := out.AttachInput(pk, t)
if err != nil {
return false, err
}
t0 := merlin.NewTranscript("VRF")
return pk.dleqVerify(t0, inout, proof)
}
// dleqVerify verifies the corresponding dleq proof.
func (pk *PublicKey) dleqVerify(t *merlin.Transcript, p *VrfInOut, proof *VrfProof) (bool, error) {
t.AppendMessage([]byte("proto-name"), []byte("DLEQProof"))
t.AppendMessage([]byte("vrf:h"), p.input.Encode([]byte{}))
if !kusamaVRF {
t.AppendMessage([]byte("vrf:pk"), pk.key.Encode([]byte{}))
}
// R = proof.c*pk + proof.s*g
R := r255.NewElement()
R.VarTimeDoubleScalarBaseMult(proof.c, pk.key, proof.s)
t.AppendMessage([]byte("vrf:R=g^r"), R.Encode([]byte{}))
// hr = proof.c * p.output + proof.s * p.input
hr := r255.NewElement().VarTimeMultiScalarMult([]*r255.Scalar{proof.c, proof.s}, []*r255.Element{p.output, p.input})
t.AppendMessage([]byte("vrf:h^r"), hr.Encode([]byte{}))
if kusamaVRF {
t.AppendMessage([]byte("vrf:pk"), pk.key.Encode([]byte{}))
}
t.AppendMessage([]byte("vrf:h^sk"), p.output.Encode([]byte{}))
cexpected := challengeScalar(t, []byte("prove"))
if cexpected.Equal(proof.c) == 1 {
return true, nil
}
return false, nil
}
// vrfHash hashes the transcript to a point.
func (pk *PublicKey) vrfHash(t *merlin.Transcript) *r255.Element {
mt := TranscriptWithMalleabilityAddressed(t, pk)
hash := mt.ExtractBytes([]byte("VRFHash"), 64)
point := r255.NewElement()
point.FromUniformBytes(hash)
return point
}
// TranscriptWithMalleabilityAddressed returns the input transcript with the public key commited to it,
// addressing VRF output malleability.
func TranscriptWithMalleabilityAddressed(t *merlin.Transcript, pk *PublicKey) *merlin.Transcript {
enc := pk.Encode()
t.AppendMessage([]byte("vrf-nm-pk"), enc[:])
return t
}