-
Notifications
You must be signed in to change notification settings - Fork 0
/
polynomial2.cpp
358 lines (311 loc) · 8.03 KB
/
polynomial2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#include <iostream>
#include <algorithm>
#include "Polynomial1.cpp"
using namespace std;
class Polynomial2;
class Term2 {
friend Polynomial2;
public:
float coef;
int expx;
int expy;
};
class Polynomial2 {
public:
Term2* termArray;
int capacity;
int terms;
Polynomial2();
Polynomial2(const Polynomial2& poly);
~Polynomial2();
void NewTerm(float coef, int expx, int expy);
void insertTerm(const Term2& term);
friend const Polynomial2 operator +(const Polynomial2& x, const Polynomial2& y);
friend const Polynomial2 operator -(const Polynomial2& x, const Polynomial2& y);
friend const Polynomial2 operator *(const Polynomial2& x, const Polynomial2& y);
float Eval(float x, float y);
Polynomial1 Evalx(float x);
Polynomial1 Evaly(float y);
Polynomial2 & operator=(const Polynomial2& poly);
Polynomial2 diffx();
Polynomial2 diffy();
Interval intpoly(Polynomial2 p, Box b);
Polynomial2 expt(Polynomial2 p, int t);
bool zero(Polynomial2 p, Box b);
bool monotone(Polynomial2 p, Box b);
friend ostream& operator<<(ostream& o, const Polynomial2& poly);
};
Polynomial2::Polynomial2()
{
this->terms = 0;
this->capacity = 100;
termArray = new Term2[this->capacity];
}
Polynomial2::Polynomial2(const Polynomial2& b)
{
this->terms = 0;
this->capacity = b.capacity;
termArray = new Term2[this->capacity];
for (int i = 0; i < b.terms; i++) {
NewTerm(b.termArray[i].coef, b.termArray[i].expx, b.termArray[i].expy);
}
}
Polynomial2::~Polynomial2()
{
delete[] termArray;
}
void Polynomial2::NewTerm(float coef, int expx, int expy)
{
if (terms == capacity) {
capacity *= 2;
Term2* tmp = new Term2[capacity];
copy(termArray, termArray + terms, tmp);
delete[] termArray;
termArray = tmp;
}
Term2 ATerm;
ATerm.coef = coef; ATerm.expx = expx; ATerm.expy = expy;
insertTerm(ATerm);
}
void Polynomial2::insertTerm(const Term2& term)
{
int i;
int temp = 1;
for (i = 0; i < terms; i++) {
if (term.expx == termArray[i].expx && term.expy == termArray[i].expy) {
termArray[i].coef += term.coef;
if (!termArray[i].coef) {
for (int j = i; j < terms - 1; j++)
termArray[j] = termArray[j + 1];
terms--;
}
temp = 0;
}
}
if (temp == 1) {
termArray[terms] = term;
terms++;
}
}
const Polynomial2 operator +(const Polynomial2& x, const Polynomial2& y) {
Polynomial2 c;
c = x;
for (int i = 0; i < y.terms; i++) {
c.NewTerm(y.termArray[i].coef, y.termArray[i].expx, y.termArray[i].expy);
}
return c;
}
const Polynomial2 operator -(const Polynomial2& x, const Polynomial2& y) {
Polynomial2 c;
c = x;
for (int i = 0; i < y.terms; i++) {
c.NewTerm(-y.termArray[i].coef, y.termArray[i].expx, y.termArray[i].expy);
}
return c;
}
const Polynomial2 operator *(const Polynomial2& x, const Polynomial2& y) {
Polynomial2 c;
for (int i = 0; i < x.terms; i++) {
for (int j = 0; j < y.terms; j++) {
c.NewTerm(x.termArray[i].coef * y.termArray[j].coef, x.termArray[i].expx + y.termArray[j].expx, x.termArray[i].expy + y.termArray[j].expy);
}
}
return c;
}
float Polynomial2::Eval(float x, float y)
{
float res = 0.0;
for (int i = 0; i < terms; i++) {
res += termArray[i].coef * pow(x, termArray[i].expx) * pow(y, termArray[i].expy);
}
return res;
}
Polynomial1 Polynomial2::Evalx(float x)
{
Polynomial1 res;
for (int i = 0; i < terms; i++) {
res.NewTerm(termArray[i].coef * pow(x, termArray[i].expx), termArray[i].expy);
}
return res;
}
Polynomial1 Polynomial2::Evaly(float y)
{
Polynomial1 res;
for (int i = 0; i < terms; i++) {
res.NewTerm(termArray[i].coef * pow(y, termArray[i].expy), termArray[i].expx);
}
return res;
}
Polynomial2& Polynomial2::operator =(const Polynomial2& x)
{
for (int i = 0; i < x.terms; i++) {
insertTerm(x.termArray[i]);
}
return *this;
}
Polynomial2 Polynomial2::diffx()
{
Polynomial2 c;
for (int i = 0; i < terms; i++) {
if (termArray[i].expx != 0) {
float nc = termArray[i].coef * float(termArray[i].expx);
int nx = termArray[i].expx - 1;
int ny = termArray[i].expy;
c.NewTerm(nc, nx, ny);
}
}
return c;
}
Polynomial2 Polynomial2::diffy()
{
Polynomial2 c;
for (int i = 0; i < terms; i++) {
if (termArray[i].expy != 0) {
float nc = termArray[i].coef * float(termArray[i].expy);
int nx = termArray[i].expx;
int ny = termArray[i].expy - 1;
c.NewTerm(nc, nx, ny);
}
}
return c;
}
Interval intpoly(Polynomial2 p, Box b) {
Interval Intx = b.Intx;
Interval Inty = b.Inty;
int terms = p.terms;
Interval res(0, 0);
for (int i = 0; i < terms; i++) {
res = res + p.termArray[i].coef * pow(Intx, p.termArray[i].expx) * pow(Inty, p.termArray[i].expy);
}
return res;
}
bool zero(Polynomial2 p, Box b) {
Interval pint = intpoly(p, b);
if (0 << pint) {
return true;
}
else {
return false;
}
}
bool monotone(Polynomial2 p, Box b) {
Polynomial2 px = p.diffx();
Polynomial2 py = p.diffy();
return !(zero(px, b)) && !(zero(py, b));
}
Polynomial1 upper_for_positive(Polynomial2 p, Interval x) {
Polynomial1 pu;
for (int i = 0; i < p.terms; i++) {
Interval resultx = p.termArray[i].coef * pow(x, p.termArray[i].expx);
pu.NewTerm(resultx.right, p.termArray[i].expy);
}
return pu;
}
Polynomial1 lower_for_positive(Polynomial2 p, Interval x) {
Polynomial1 pl;
for (int i = 0; i < p.terms; i++) {
Interval resultx = p.termArray[i].coef * pow(x, p.termArray[i].expx);
pl.NewTerm(resultx.left, p.termArray[i].expy);
}
return pl;
}
Polynomial1 upper_for_negative(Polynomial2 p, Interval x) {
Polynomial1 pu;
for (int i = 0; i < p.terms; i++) {
Interval resultx = p.termArray[i].coef * pow(x, p.termArray[i].expx);
if (p.termArray[i].expy % 2 == 0) {
pu.NewTerm(resultx.right, p.termArray[i].expy);
}
else {
pu.NewTerm(resultx.left, p.termArray[i].expy);
}
}
return pu;
}
Polynomial2 expt(Polynomial2 p, int t) {
Polynomial2 res;
for (int i = 0; i < t; i++) {
res = res * p;
}
return res;
}
Polynomial1 lower_for_negative(Polynomial2 p, Interval x) {
Polynomial1 pl;
for (int i = 0; i < p.terms; i++) {
Interval resultx = p.termArray[i].coef * pow(x, p.termArray[i].expx);
if (p.termArray[i].expy % 2 == 0) {
pl.NewTerm(resultx.left, p.termArray[i].expy);
}
else {
pl.NewTerm(resultx.right, p.termArray[i].expy);
}
}
return pl;
}
float uppereval(Polynomial2 p, Interval x, float y) {
Polynomial1 p1;
if (y > 0) {
p1 = upper_for_positive(p, x);
}
else {
p1 = upper_for_negative(p, x);
}
return p1.Eval(y);
}
float lowereval(Polynomial2 p, Interval x, float y) {
Polynomial1 p1;
if (y > 0) {
p1 = lower_for_positive(p, x);
}
else {
p1 = lower_for_negative(p, x);
}
return p1.Eval(y);
}
float one_point_search(Polynomial2 p, Interval y, float x, float epsilon) {
if (y.len() <= epsilon) {
return y.mid();
}
else {
float res;
float yp = y.left + epsilon;
while (p.Eval(x, y.left) * p.Eval(x, yp) > 0 && yp < y.right) {
yp = yp + epsilon;
}
if (yp < y.right) {
res = yp - epsilon / 2;
}
else {
res = y.right;
}
return res;
}
}
Interval two_point_search(Polynomial2 p, Interval y, float x, float epsilon) {
if (y.len() <= epsilon) {
return Interval(0, -1);
}
else {
Interval res;
float yp = y.left + epsilon;
while (p.Eval(x, y.left) * p.Eval(x, yp) > 0 && yp < y.right) {
yp = yp + epsilon;
}
if (yp < y.right) {
res.left = yp - epsilon / 2;
res.right = one_point_search(p, Interval(yp, y.right), x, epsilon);
return res;
}
else {
return Interval(0, -1);
}
}
}
ostream& operator<<(ostream& o, const Polynomial2& poly)
{
for (int i = 0; i < poly.terms - 1; i++) {
o << poly.termArray[i].coef << "x^" << poly.termArray[i].expx << "y^" << poly.termArray[i].expy << " + ";
}
o << poly.termArray[poly.terms - 1].coef << "x^" << poly.termArray[poly.terms - 1].expx << "y^" << poly.termArray[poly.terms - 1].expy;
return o;
}