-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset3Params.m
53 lines (44 loc) · 1.53 KB
/
dataset3Params.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
%
% You need to return the following variables correctly.
C = 1;
sigma = 0.3;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
trange=[0.01,0.03,0.1,0.3,1,3,10,30];
merror=10^6;
cs=C;
sig=sigma;
for i=1:size(trange,2)
for j=1:size(trange,2)
C=trange(i);
sigma=trange(j);
model=svmTrain(X,y,C,@(x1,x2)gaussianKernel(x1,x2,sigma));
predictions=svmPredict(model,Xval);
error=mean(double(predictions~=yval));
if error<merror,
cs=C;
sig=sigma;
merror=error;
endif
endfor
endfor
C=cs;
sigma=sig;
% =========================================================================
end