forked from lydia1895/PMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PMM_to_FMM_RT.m
executable file
·181 lines (157 loc) · 5.26 KB
/
PMM_to_FMM_RT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
function [fx_coef,ud_FMM,x1,x2] = PMM_to_FMM_RT(ud_PMM, N, NN, La,...
alpha_ref, beta_ref, alpha0, beta0, alpha_v, beta_v, ...
b_x1, b_x2, N_intervals_x, N_intervals_y, N_basis_x, N_basis_y, Nx, nx, Ny, ny,...
ax, ay)
n_points_int = 300;
ksi1 = linspace(-1,1,n_points_int);
ksi2 = linspace(-1,1,n_points_int);
%x1 = zeros(n_points_int,N_intervals_x);
%x2 = zeros(n_points_int,N_intervals_y);
x1 = zeros(N_intervals_x,n_points_int);
x2 = zeros(N_intervals_y,n_points_int);
for k1 = 1:N_intervals_x
x1(k1,:) = ( (b_x1(k1+1)-b_x1(k1))*ksi1+(b_x1(k1+1)+b_x1(k1)) )/2;
end
for k2 = 1:N_intervals_y
x2(k2,:) = ( (b_x2(k2+1)-b_x2(k2))*ksi2+(b_x2(k2+1)+b_x2(k2)) )/2;
end
%x(k1) = PMM_matched_coordinates_ellipse(x1(k1), x2(k2), P1, P2, R1, R2)
%y(k2) = PMM_matched_coordinates_ellipse(x1(k1), x2(k2), P1, P2, R1, R2)
x = x1;
y = x2;
Nmax_x = max(N_basis_x); %maximum number of Gegenbauer polynomial on all intervals
Nmax_y = max(N_basis_y); %maximum number of Gegenbauer polynomial on all intervals
Nmax = max(Nmax_x, Nmax_y);
C = zeros(Nmax, n_points_int);
for m=1:Nmax
for i = 1:n_points_int
C(m,i) = mfun('G',m-1,La,ksi1(i));
end
%C(m,:) = gegenbauerC(m-1,La,ksi1);
end
lx1=zeros(N_intervals_x,1);
for k=1:N_intervals_x
lx1(k) = (b_x1(k+1) - b_x1(k))/2;
end
lx2=zeros(N_intervals_y,1);
for k=1:N_intervals_y
lx2(k) = (b_x2(k+1) - b_x2(k))/2;
end
N_total_x = sum(N_basis_x); %total number of basis functions
N_total_y = sum(N_basis_y); %total number of basis functions
alpha_p = alpha0 - alpha_ref - alpha_v
beta_p = beta0 - beta_ref - beta_v
N_total_x3 = N_total_x - N_intervals_x;
N_total_y3 = N_total_y - N_intervals_y;
int_RT_x = zeros(2*N+1, 2*N+1, N_total_x3, N_total_y);
int_RT_y = zeros(2*N+1, 2*N+1, N_total_x, N_total_y3);
for p=1:(2*N+1)
for q=1:(2*N+1)
for i1 = 1:(n_points_int-1) %points of integration on the interval
for i2 = 1:(n_points_int-1)
%integral for Ex
for k1 = 1:N_intervals_x %for each interval
for k2 = 1:N_intervals_y
for j1 = (Nx(k1)+1):(Nx(k1)+nx(k1))
for j2 = (Ny(k2)+(k2-1)+1):(Ny(k2)+(k2-1)+ny(k2)+1)
num1 = j1 - Nx(k1); %true number of Gegenbauer polynomial
num2 = j2 - Ny(k2) - (k2-1);
int_RT_x(p, q, j1, j2) = int_RT_x(p, q, j1, j2) + C(num1,i1)*C(num2,i2)*...
exp(1j*alpha_p(p)*x(k1,i1))*exp(1j*beta_p(q)*y(k2,i2))*...
(x(k1,i1+1)-x(k1,i1))*(y(k2,i2+1)-y(k2,i2));
end
end
%integral for Ey
for jj1 = (Nx(k1)+(k1-1)+1):(Nx(k1)+(k1-1)+nx(k1)+1)
for jj2 = (Ny(k2)+1):(Ny(k2)+ny(k2))
nnum1 = jj1 - Nx(k1) - (k1-1);
nnum2 = jj2 - Ny(k2); %true number of Gegenbauer polynomial
int_RT_y(p, q, jj1, jj2) = int_RT_y(p,q,jj1,jj2) + C(nnum1,i1)*C(nnum2,i2)*...
exp(1j*alpha_p(p)*x(k1,i1))*exp(1j*beta_p(q)*y(k2,i2))*...
(x(k1,i1+1)-x(k1,i1))*(y(k2,i2+1)-y(k2,i2));
end
end
end
end
end
end
end
end
N_total = N_total_x*N_total_y;
N_total_3 = (N_total_x3)*(N_total_y3);
fx = zeros(2*N+1, 2*N+1, N_total_x3, N_total_y3);
fy = zeros(2*N+1, 2*N+1, N_total_x3, N_total_y3);
fx_coef = zeros(NN, N_total_3);
fy_coef = zeros(NN, N_total_3);
%[na_x,nna_x] = size(ax);
%[na_y,nna_y] = size(ay);
for p = 1:(2*N+1)
for q = 1:(2*N+1)
for i = 1:N_total_x3
for j = 1:N_total_y3
%coefficients for Ex
for sy = 1:N_total_y
fx(p,q,i,j) = fx(p,q,i,j) + int_RT_x(p,q,i,sy)*ay(sy,j);
end
%coefficients for Ey
for sx = 1:N_total_x
fy(p,q,i,j) = fy(p,q,i,j) + int_RT_y(p,q,sx,j)*ax(sx,i);
end
row_FMM = q + (p-1)*(2*N+1);
col_PMM = j + (i-1)*(N_total_y3);
fx_coef(row_FMM, col_PMM) = fx(p,q,i,j);
fy_coef(row_FMM, col_PMM) = fy(p,q,i,j);
end
end
end
end
%{
for p = 1:(2*N+1)
for q = 1:(2*N+1)
for u = 1:N_intervals_x
for v = 1:N_intervals_y
%coefficients for Ex
for i = 1:N_total_x3
for j = 1:N_total_y3
for s = 1:N_total_y
if ((Nx(u)+1)<=i)&&(i<=(Nx(u)+nx(u)))&&...
((Ny(v)+(v-1)+1)<=s)&&(s<=(Ny(v)+(v-1)+ny(v)+1))&&(ay(s,j)~=0)
fx(p,q,i,j) = fx(p,q,i,j) + int_RT_x(p,q,i,s)*ay(s,j);
end
end
row_FMM = q + (p-1)*(2*N+1);
col_PMM = j + (i-1)*(N_total_y3);
fx_coef(row_FMM, col_PMM) = fx(p,q,i,j);
end
end
%coefficients for Ey
for i = 1:N_total_x3
for j = 1:N_total_y3
for s = 1:N_total_x
if ((Nx(u)+(u-1)+1)<=s)&&(s<=(Nx(u)+(u-1)+nx(u)+1))&&...
((Ny(v)+1)<=j)&&(j<=(Ny(v)+ny(v)))&&(ax(s,i)~=0)
fy(p,q,i,j) = fy(p,q,i,j) + int_RT_y(p,q,s,j)*ax(s,i);
end
end
row_FMM = q + (p-1)*(2*N+1);
col_PMM = j + (i-1)*(N_total_y3);
fy_coef(row_FMM, col_PMM) = fy(p,q,i,j);
end
end
end
end
end
end
%}
u1_PMM = ud_PMM(1:N_total_3); %u_last
u2_PMM = ud_PMM((N_total_3+1):2*N_total_3);
d1_PMM = ud_PMM((2*N_total_3+1):3*N_total_3); %d0
d2_PMM = ud_PMM((3*N_total_3+1):4*N_total_3);
%fx_coeff = fx_coef
[Nxx, NNxx] = size(b_x1);
[Nyy, NNyy] = size(b_x2);
periodx = b_x1(NNxx)-b_x1(1);
periody = b_x2(NNyy)-b_x2(1);
norm = periodx*periody;
fx_coef = fx_coef/norm;
fy_coef = fy_coef/norm;