-
Notifications
You must be signed in to change notification settings - Fork 676
/
NLP Document Classification
179 lines (132 loc) · 4.63 KB
/
NLP Document Classification
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import json
import datetime
import csv
import urllib
from bs4 import BeautifulSoup
from nltk import sent_tokenize, word_tokenize, pos_tag
import nltk
import numpy as np
import matplotlib.pyplot as plt
import codecs
from string import punctuation
import logging
import matplotlib.pyplot as plt
from gensim import corpora
from collections import Counter
reader = codecs.getreader("utf-8")
app_id = "12345"
app_secret = "12345"
access_token = app_id + "|" + app_secret
page_id = 'foxnews'
def feedFacebook(page_id, access_token,num_statuses):
base = "https://graph.facebook.com/v2.8"
node = "/" + page_id + "/feed"
parameters = "/?fields=message,link,likes.limit(1).summary(true),comments.limit(1).summary(true),shares&limit=%s&access_token=%s" % (num_statuses, access_token)
url = base + node + parameters
print(url)
response = urllib.request.urlopen(url)
data = json.load(reader(response))
print(json.dumps(data, indent=4, sort_keys=True))
return data
a=feedFacebook(page_id, access_token,100)
for k in range(0,100):
print(a['data'][k]['message'])
txt=[]
share=[]
for i in range(0,100):
txt.append(a['data'][i]['message'])
txt
def strip_punctuation(s):
return ''.join(c for c in s if c not in punctuation)
import re
txt=[strip_punctuation(re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '',txt[i])) for i in range(0,len(txt))]
tokens = word_tokenize(str(txt))
tokens
long_words1 = [w for w in tokens if 7<len(w)<9]
sorted(long_words1)
fdist01 = nltk.FreqDist(long_words1)
fdist01
a1=fdist01.most_common(20)
a1
names0=[]
value0=[]
for i in range(5,len(a1)):
names0.append(a1[i][0])
value0.append(a1[i][1])
names0.reverse()
value0.reverse()
val = value0 # the bar lengths
pos = np.arange(len(a1)-5)+.5 # the bar centers on the y axis
pos
val
plt.figure(figsize=(9,4))
plt.barh(pos,val, align='center',alpha=0.7,color='rgbcmyk')
plt.yticks(pos, names0)
plt.xlabel('Mentions')
plt.title('FACEBOOK ANALYSIS\n'+page_id)
txt
sentences = txt
##### LDA
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
documents = sentences
# remove common words and tokenize
stoplist = set('for a of the and to in'.split())
texts = [[word for word in document.lower().split() if word not in stoplist]
for document in documents]
texts
# remove words that appear only once
from collections import defaultdict
frequency = defaultdict(int)
for text in texts:
for token in text:
frequency[token] += 1
frequency
texts = [[token for token in text if frequency[token] > 1]
for text in texts]
from pprint import pprint # pretty-printer
pprint(texts)
dictionary = corpora.Dictionary(texts)
dictionary.save('/tmp/deerwester4.dict')
print(dictionary.token2id)
## VETOR DAS FRASES
corpus = [dictionary.doc2bow(text) for text in texts]
corpora.MmCorpus.serialize('/tmp/deerwester4.mm', corpus) # store to disk, for later use
print(corpus)
from gensim import corpora, models, similarities
tfidf = models.TfidfModel(corpus) # step 1 -- initialize a model
corpus_tfidf = tfidf[corpus]
for doc in corpus_tfidf:
print(doc)
lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=5) # initialize an LSI transformation
corpus_lsi = lsi[corpus_tfidf] # create a double wrapper over the original corpus: bow->tfidf->fold-in-lsi
lsi.print_topics(5)
ag=lsi.show_topics(num_topics=5, num_words=10)
cd=[''.join([i for i in str(ag[x]) if not i.isdigit()]) for x in range(0,4)]
bc=[strip_punctuation(re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '',str(cd[i]))) for i in range(0,4)]
txt2=[str(txt[i]).lower() for i in range(0,len(txt))]
tokens_lsi=[word_tokenize(bc[i]) for i in range(0,len(bc))]
tokens_txt=[word_tokenize(txt2[i]) for i in range(0,len(txt))]
for i in range(0,len(tokens_txt)):
wordcounts = Counter(tokens_txt[i])
print(wordcounts['donald'])
def norm(x):
return (x-np.min(x))/(np.max(x)-np.min(x))
'''TOPIC 0'''
a0=[]
for i in range(0,len(tokens_txt)):
a0.append(np.sum([Counter(tokens_txt[i])[x] for x in tokens_lsi[0]]))
topic1=norm(a0)
'''TOPIC 1'''
a1=[]
for i in range(0,len(tokens_txt)):
a1.append(np.sum([Counter(tokens_txt[i])[x] for x in tokens_lsi[1]]))
topic2=norm(a1)
'''TOPIC 2'''
a2=[]
for i in range(0,len(tokens_txt)):
a2.append(np.sum([Counter(tokens_txt[i])[x] for x in tokens_lsi[2]]))
topic3=norm(a2)
threshold=0.5
[print(i,documents[i],'|| Match={}'.format(topic1[i]),'\n') for i in np.where(topic1>threshold)[0]]
[print(i,documents[i],'|| Match={}'.format(topic2[i]),'\n') for i in np.where(topic2>threshold)[0]]
[print(i,documents[i],'|| Match={}'.format(topic3[i]),'\n') for i in np.where(topic3>threshold)[0]]