-
Notifications
You must be signed in to change notification settings - Fork 0
/
knowledge_distillation.py
345 lines (274 loc) · 12 KB
/
knowledge_distillation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
# needed for Ondrej
import numpy as np
import os.path
from os import path
# Rene
from sklearn.model_selection import train_test_split
import pretrainedmodels as ptm
from my_codes.train_imagenet.main_stratified import AverageMeter, ProgressMeter, accuracy, save_checkpoint
# For half precision
scaler = torch.cuda.amp.GradScaler()
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
ptm_names = ptm.model_names
model_names += ptm_names
parser = argparse.ArgumentParser(description='PyTorch ImageNet knowledge distillation')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=model_names,
help='student model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--output-folder', default='', type=str, metavar='output_folder',
help='path to a folder in which training outputs will be stored')
parser.add_argument('--from-ptm', action='store_true', dest='from_ptm',
help='whether to load the model from library pretrainedmodels')
best_acc1 = 0
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
# Simply call main_worker function
main_worker(args.gpu, args)
def dataset_with_indices(cls):
"""
Modifies the given Dataset class to return a tuple data, target, index
instead of just data, target.
"""
def __getitem__(self, index):
data, target = cls.__getitem__(self, index)
return data, target, index
return type(cls.__name__, (cls,), {
'__getitem__': __getitem__,
})
def main_worker(gpu, args):
global best_acc1
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
if not args.from_ptm:
model = models.__dict__[args.arch](pretrained=True)
else:
model = ptm.__dict__[args.arch](num_classes=1000, pretrained='imagenet')
else:
print("=> creating model '{}'".format(args.arch))
if not args.from_ptm:
model = models.__dict__[args.arch]()
else:
model = ptm.__dict__[args.arch](num_classes=1000, pretrained=False)
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
valid_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
ImageFolderWithIndices = dataset_with_indices(datasets.ImageFolder)
train_dataset_train_transf = ImageFolderWithIndices(
traindir,
train_transform
)
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset_train_transf, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
ImageFolderWithIndices(valdir, valid_transform),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(None, val_loader, model, criterion, args)
return
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
acc1 = validate(epoch, val_loader, model, criterion, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
}, is_best, args)
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
prediction_list = []
target_list = []
complete = (epoch % 17 == 16) or (epoch == args.epochs - 1)
for i, (images, target, indices) in enumerate(train_loader):
if complete:
assert(target.is_cuda == False)
assert(target.requires_grad == False)
target_py = target.detach().clone().numpy()
target_list.append(target_py)
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
# print(output.requires_grad)
assert(output.is_cuda == True)
assert(output.requires_grad == True)
# print(output.is_cuda)
# print(output.shape)
# loss = criterion(output, target)
if complete:
# prediction_list.append(output.cpu().detach().numpy())
prediction_list.append(output.detach().cpu().clone().numpy())
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
#loss.backward()
scaler.scale(loss).backward()
#optimizer.step()
scaler.step(optimizer)
scaler.update()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
with open(path.join(args.output_folder, "valid_summary.txt"), "a") as myfile:
myfile.write("{epoch},{losses.avg:.4e},{top1.avg:.3f},{top5.avg:.3f},\t".
format(epoch = epoch, losses = losses, top1 = top1, top5 = top5))
if len(prediction_list) > 0:
prediction_array = np.concatenate(prediction_list)
target_array = np. concatenate(target_list)
np.save(path.join(args.output_folder, "train_output_{}.npy".format(epoch)), prediction_array)
np.save(path.join(args.output_folder, "train_target_{}.npy".format(epoch)), target_array)
if __name__ == '__main__':
main()