-
Notifications
You must be signed in to change notification settings - Fork 99
/
rwkv_eval.inc
241 lines (198 loc) · 9.11 KB
/
rwkv_eval.inc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// Copies state from an input buffer to the ggml tensor of the graph.
static void rwkv_set_inputs(const struct rwkv_context * ctx, const struct rwkv_computation_graph & graph, const float * state_in) {
if (state_in) {
ggml_backend_tensor_set(graph.input_state, state_in, 0, rwkv_tensor_nbytes(graph.input_state));
} else {
float * state_data = (float *) malloc(rwkv_tensor_nbytes(graph.input_state));
rwkv_init_state(ctx, state_data);
ggml_backend_tensor_set(graph.input_state, state_data, 0, rwkv_tensor_nbytes(graph.input_state));
free(state_data);
}
}
// Copies state and logits from ggml tensors of the graph to output buffers.
static void rwkv_get_outputs(const struct rwkv_computation_graph & graph, float * state_out, float * logits_out) {
if (state_out) {
ggml_backend_tensor_get(graph.output_state, state_out, 0, rwkv_tensor_nbytes(graph.output_state));
}
if (logits_out) {
ggml_backend_tensor_get(graph.logits, logits_out, 0, rwkv_tensor_nbytes(graph.logits));
}
}
// Evaluates a computation graph, optionally skipping logit computation.
static void rwkv_eval_graph(struct rwkv_computation_graph & graph, const uint32_t n_threads, const bool compute_logits) {
if (!compute_logits) {
graph.cgraph->n_nodes = graph.pre_logits_nodes;
graph.cgraph->n_leafs = graph.pre_logits_leafs;
} else {
graph.cgraph->n_nodes = graph.post_logits_nodes;
graph.cgraph->n_leafs = graph.post_logits_leafs;
}
ggml_backend_sched_graph_compute(graph.sched, graph.cgraph.get());
}
// API function.
bool rwkv_eval(struct rwkv_context * ctx, const uint32_t token, const float * state_in, float * state_out, float * logits_out) {
ctx->last_error = RWKV_ERROR_NONE;
const struct rwkv_file_header & header = ctx->model->header;
const size_t n_vocab = header.n_vocab;
RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, token < n_vocab, "Token (%" PRId32 ") is out of range (0 .. %zu)", token, n_vocab - 1);
if (!ctx->serial_graph.sched) {
ctx->serial_graph.sched = ggml_backend_sched_new(ctx->model->backends.data(), NULL, ctx->model->backends.size(), RWKV_MAX_NODES, false);
auto graph = ctx->serial_graph.cgraph.get();
for (int i = 0; i < graph->n_nodes; i++) {
auto node = graph->nodes[i];
if (std::string(node->name).find(".in.") != std::string::npos ||
std::string(node->name).find(".out.") != std::string::npos) {
ggml_backend_sched_set_tensor_backend(ctx->serial_graph.sched, node, ctx->model->backends.back());
}
}
for (int i = 0; i < graph->n_leafs; i++) {
auto leaf = graph->leafs[i];
if (std::string(leaf->name).find("state.in") != std::string::npos ||
std::string(leaf->name).find("state.out") != std::string::npos) {
ggml_backend_sched_set_tensor_backend(ctx->serial_graph.sched, leaf, ctx->model->backends.back());
}
}
ggml_backend_sched_set_tensor_backend(ctx->serial_graph.sched, ctx->serial_graph.tokens, ctx->model->backends.back());
ggml_backend_sched_alloc_graph(ctx->serial_graph.sched, ctx->serial_graph.cgraph.get());
}
rwkv_set_inputs(ctx, ctx->serial_graph, state_in);
ggml_backend_tensor_set(ctx->serial_graph.tokens, &token, 0, rwkv_tensor_nbytes(ctx->serial_graph.tokens));
rwkv_eval_graph(ctx->serial_graph, ctx->n_threads, logits_out != NULL);
rwkv_get_outputs(ctx->serial_graph, state_out, logits_out);
return true;
}
// API function.
bool rwkv_eval_sequence(
struct rwkv_context * ctx,
const uint32_t * sequence,
const size_t sequence_len,
const float * state_in,
float * state_out,
float * logits_out
) {
ctx->last_error = RWKV_ERROR_NONE;
RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, sequence_len > 0, "Sequence length is 0");
if (sequence_len == 1) {
// Avoid building single-token sequence graph, we already have regular eval for this.
return rwkv_eval(
ctx,
sequence[0],
state_in,
state_out,
logits_out
);
}
if (sequence) {
const size_t n_vocab = ctx->model->header.n_vocab;
for (size_t i = 0; i < sequence_len; i++) {
const uint32_t token = sequence[i];
RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, token < n_vocab, "Token at index %zu (%" PRId32 ") is out of range (0 .. %zu)", i, token, n_vocab - 1);
}
}
if (ctx->last_used_sequence_length != sequence_len) {
if (ctx->sequential_graph.sched) {
ggml_backend_sched_free(ctx->sequential_graph.sched);
ctx->sequential_graph.sched = NULL;
}
RWKV_ENSURE_OR_FALSE(rwkv_measure_and_build_sequential_context(*ctx->model, ctx->sequential_graph, sequence_len));
ctx->last_used_sequence_length = sequence_len;
}
if (sequence) {
if (!ctx->sequential_graph.sched) {
ctx->sequential_graph.sched = ggml_backend_sched_new(ctx->model->backends.data(), NULL, ctx->model->backends.size(), RWKV_MAX_NODES, false);
auto graph = ctx->sequential_graph.cgraph.get();
for (int i = 0; i < graph->n_nodes; i++) {
auto node = graph->nodes[i];
if (std::string(node->name).find(".in.") != std::string::npos ||
std::string(node->name).find(".out.") != std::string::npos) {
ggml_backend_sched_set_tensor_backend(ctx->sequential_graph.sched, node, ctx->model->backends.back());
}
}
for (int i = 0; i < graph->n_leafs; i++) {
auto leaf = graph->leafs[i];
if (std::string(leaf->name).find("state.in") != std::string::npos ||
std::string(leaf->name).find("state.out") != std::string::npos) {
ggml_backend_sched_set_tensor_backend(ctx->sequential_graph.sched, leaf, ctx->model->backends.back());
}
}
ggml_backend_sched_set_tensor_backend(ctx->sequential_graph.sched, ctx->sequential_graph.tokens, ctx->model->backends.back());
ggml_backend_sched_alloc_graph(ctx->sequential_graph.sched, ctx->sequential_graph.cgraph.get());
}
rwkv_set_inputs(ctx, ctx->sequential_graph, state_in);
ggml_backend_tensor_set(ctx->sequential_graph.tokens, sequence, 0, sequence_len * sizeof(uint32_t));
rwkv_eval_graph(ctx->sequential_graph, ctx->n_threads, logits_out != NULL);
rwkv_get_outputs(ctx->sequential_graph, state_out, logits_out);
}
return true;
}
// API function.
bool rwkv_eval_sequence_in_chunks(
struct rwkv_context * ctx,
const uint32_t * tokens,
const size_t sequence_len,
const size_t chunk_size,
const float * state_in,
float * state_out,
float * logits_out
) {
RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, sequence_len > 0, "Sequence length is 0");
RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, chunk_size > 0, "Chunk size is 0");
// Will be de-allocated automatically on return.
std::unique_ptr<float[]> state{ new(std::nothrow) float[rwkv_get_state_len(ctx)] };
if (state_in != NULL) {
memcpy(state.get(), state_in, rwkv_get_state_len(ctx) * sizeof(float));
} else {
rwkv_init_state(ctx, state.get());
}
size_t chunk_count = sequence_len / chunk_size;
size_t remainder = sequence_len % chunk_size;
uint32_t * tokens_offset = (uint32_t *) tokens;
for (size_t c = 0; c < chunk_count; c++) {
bool is_last_eval = c == chunk_count - 1 && remainder == 0;
bool result = rwkv_eval_sequence(
ctx,
tokens_offset,
chunk_size,
state.get(),
// On the last eval call, copy the state into the user-provided buffer.
is_last_eval ? state_out : state.get(),
// If this is not the last call, we don't have the use for logits and can skip their calculation.
is_last_eval ? logits_out : NULL
);
if (!result) {
return false;
}
tokens_offset += chunk_size;
}
if (remainder > 0) {
bool result = rwkv_eval_sequence(
ctx,
tokens_offset,
remainder,
state.get(),
// This eval call is always the last.
state_out,
logits_out
);
if (!result) {
return false;
}
}
return true;
}
// API function.
void rwkv_init_state(const struct rwkv_context * ctx, float * state) {
memset(state, 0, rwkv_get_state_len(ctx) * sizeof(float));
if (ctx->model->arch_version_major >= 5) {
return;
}
const struct rwkv_file_header & header = ctx->model->header;
const size_t layer_size = (size_t) header.n_embed * 5;
const size_t layer_zero = (size_t) header.n_embed * 4;
const size_t layers_size = (size_t) header.n_layer * layer_size;
for (size_t start = 0; start < layers_size; start += layer_size) {
for (size_t i = layer_zero; i < layer_size; i++) {
state[start + i] = -1e30F;
}
}
}